(3.235.108.188) 您好!臺灣時間:2021/03/07 20:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林仲達
研究生(外文):Chung Dial Lim
論文名稱:基於深度影像步態分析實現感官刺激導引復健助行系統
論文名稱(外文):Sensory Cues Guided Rehabilitation Robotic Walker Realized by Depth Image based Gait Analysis
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen Fu
口試委員:黃有評李蔡彥練光祐戴浩志
口試委員(外文):Yo-Ping HuangTsai-Yen LiKuang-Yow LianHao-Chih Tai
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:75
中文關鍵詞:感官刺激引導行走步態分析帕金森氏症輔助行走機器人復健系統
外文關鍵詞:Sensory cuesGait analysisParkinson DiseaseAssistive Robotic WalkerRehabilitation System
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一感官刺激為基礎之引導助行系統以協助改善帕金森氏症患者之行走步態。一般常見的帕金森氏症患者之異常步態可分為凍結步態與小碎步。基於許多研究證實視覺與聽覺刺激對於帕金森氏症患者具有相當顯著的復健效果,故於本論文中引用影像與聲音之感官刺激結合輔助行走機器人提供帕金森氏症患者復健以達到改善步態的目標。本系統透過建置於助行機器人內部之深度影像攝影機實現一非侵入式、即時三維下肢影像追蹤實現行走步態分析功能。本系統中提出一適應性步態之感官刺激引導復健功能,經由患者之下肢影像追蹤與步態分析之結果提供符合患者穩定步態之視覺影像刺激,並經由內建於助行機器人中的投影機投射視覺刺激影像於地面與具有符合患者行走頻率之提示聲。再者,我們提出可調整式視覺刺激提示功能以達到同時改善患者步態且減少患者於復健時持續跨步超出下肢負荷所造成的負擔。本系統測試實驗中,我們透過動作捕捉技術平台驗證下肢影像追蹤之準確性。此外,我們邀請七位受試者包含四位帕金森氏症患者以及三位健康年長者進行三天的復健系統測試,實驗結果顯示患者使用本系統復健並獲得顯著的步態改善成果。

In this thesis, we propose a sensory cues guided robotic walker for improving gaits of Parkinson Disease (PD) patients. A completely non-intrusive, real time 3D leg pose tracking and gait analysis are proposed by using depth camera which mounted on the rear of robotic walker. It has been studied that the sensory cues can serve as effective stimuli to the PD patients for gait improvement. In our work, the sensory cues include visual and auditory cue are incorporated into robotic walker. The adaptive gait sensory cues guider provides the visual cue projected on ground by projector installed on walker and rhythmic audio cue to stimulate patients’ walking gait. An adaptive gait rehabilitation mechanism is proposed to offer an appropriate visual and auditory cue based on walking gait. The adjustable visual cue is proposed to improve their gait and reduce their uncomfortableness simultaneously. In experiment, the accuracy rate of proposed 3D leg pose tracking was evaluated by a motion capture system. In addition, seven subjects (4 PD patients and 3 healthy elders) were invited to test the system for three days. The result shows subjests’ gait performance has substantially improved by using our system.

口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents v
List of Figures viii
List of Tables xii
1 Introduction 1
1.1 Related Work 4
1.1.1 Assistive Robotic Walker 4
1.1.2 Studies in Human Gait Analysis 5
1.1.3 Walking-aid for Parkinson’s Disease Patient 7
1.2 Objectives 8
1.3 Thesis Organization 10
2 Preliminary 11
2.1 Field Study 11
2.2 Particle Filter 13
2.2.1 Non-parametric Representation 13
2.2.2 Particle Filter Algorithm 14
2.3 Random Sample Consensus 16
2.4 The Architecture of Robotic Walker 18
2.4.1 Road Conditions Detection 19
2.5 Description of 3D Depth Sensor And Configuration 22
3 Sensory Cue Guided Rehabilitation Robotic Walker 25
3.1 System Framework 25
3.2 Human Leg Segmentation 27
3.3 Ankle Joint Identification 29
3.4 3D Leg Pose Tracking 31
3.4.1 State Model 33
3.4.2 Initialization 34
3.4.3 Motion model 36
3.4.4 Computation of The Particles Weights 37
3.5 Gait Analysis and Abnormal Gait Identification 39
3.6 Sensory Cues Guided Rehabilitation 41
3.6.1 Adaptive Gait Sensory Cues Guider 43
4 Experimental Result 50
4.1 The validation of 3D Gait Tracking and Analysis 50
4.2 Evaluation of Sensory Cues Guided Rehabilitation 57
5 Conclusion 67
References 69

[1] United Nations, Department of Economic and Social Affairs, Population Division, “World population ageing 2013,” vol. A/348, 2013.
[2] Executive Yuan, R.O.C. (2013) 2013 statistic report of country conditions. [Online]. Available: http://www.stat.gov.tw/public/Data/3108161445H1A3FB2M.pdf
[3] China Posts News. (2013) Taiwan must address the challenges of an aging society. [Online]. Available: http://www.chinapost.com.tw/editorial/taiwan-issues/2013/10/13/391104/Taiwan-must.htm
[4] Parkinson Diseases Foundation. [Online]. Available: http://www.parkinson.org/parkinson-s-disease.aspx
[5] Johnell,O.; Melton III,L. J.; Atkinson,E. J.; O’fallon,W. M. and Kurland,L. T., “Fracture risk in patients with parkinsonism: a population based study in olmsted county,minnesota,” Age Ageing, vol. 21, pp. 32–38, 1992.
[6] Helmich,R.C.; Hallett,M.; Deuschl,G.; Toni,I. and Bloem,B.R., “Cerebral causes and consequences of parkinsonian resting tremor,” Brain, vol. 135(11), pp.3206–3226, 2012.
[7] Rubinstein,T.C.; Giladi,N. and Hausdorff,J.M., “The power of cueing to circumvent dopamine deficits: A review of physical therapy treatment of gait disturbances in parkinson’s disease,” Moving Disorder, vol. 17, pp. 1148–1160, 2002.
[8] S. Dubowsky, F. Genot, S. Godding, H. Kozono, A. Skwersky, H. Yu, and L. S.Yu, “Pamm-a robotic aid to the elderly for mobility assistance and monitoring: a “helping-hand”for the elderly,” in 2000 IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 2000, pp. 570–576.
[9] B. Graf, “An adaptive guidance system for robotic walking aids,” CIT. Journal of Computing and Information Technology, vol. 17, no. 1, pp. 109–120, 2009.
[10] A. Morris, R. Donamukkala, A. Kapuria, A. Steinfeld, J. T. Matthews, J. Dunbar-Jacob, and S. Thrun, “A robotic walker that provides guidance,” in 2003 IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 2003, pp. 25–30.
[11] H. M. Schepers, H. Koopman, and P. H. Veltink, “Ambulatory assessment of ankle and foot dynamics,” 2007 IEEE Transactions on Biomedical Engineering, vol. 54, no. 5, pp. 895–902, 2007.
[12] P. Esser, H. Dawes, J. Collett, M. G. Feltham, and K. Howells, “Assessment of spatio-temporal gait parameters using inertial measurement units in neurological populations,” Gait &; posture, vol. 34, no. 4, pp. 558–560, 2011.
[13] E. Bishop and Q. Li, “Walking speed estimation using shank-mounted accelerometers,” in 2010 IEEE International Conference on Robotics and Automation. IEEE, 2010, pp. 5096–5101.
[14] S. J. M. Bamberg, A. Y. Benbasat, D. M. Scarborough, D. E. Krebs, and J. A. Paradiso, “Gait analysis using a shoe-integrated wireless sensor system,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, no. 4, pp. 413–423, 2008.
[15] J. Saboune, C. Rose, and F. Charpillet, “Factored interval particle filtering for gait analysis,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007, pp. 3232–3235.
[16] M. Goffredo, I. Bouchrika, J. N. Carter, and M. S. Nixon, “Self-calibrating view-invariant gait biometrics,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 40, no. 4, pp. 997–1008, 2010.
[17] M. Goffredo, J. N. Carter, and M. S. Nixon, “Front-view gait recognition,” in 2008 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, 2008. IEEE, 2008, pp. 1–6.
[18] E. Auvinet, F. Multon, and J. Meunier, “Lower limb movement asymmetry measurement with a depth camera,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2012, pp. 6793–6796.
[19] R.-L. Hu, A. Hartfiel, J. Tung, A. Fakih, J. Hoey, and P. Poupart, “3d pose tracking of walker users’ lower limb with a structured-light camera on a moving platform,” in 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, 2011, pp. 29–36.
[20] M. Nihei, T. Ando, Y. Kaneshige, T. Inoue, and M. G. Fujie, “A new mobility-aid vehicle with a unique turning system,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2008, pp. 293–300.
[21] Geunho Lee; Ohnuma, T.; Nak Young Chong; Soon-Geul Lee, “Walking intent based movement control for jaist active robotic walker,” in IEEE Transactions on Systems, Man, and Cybernetics: Systems. IEEE, 2014, pp. 665–672.
[22] W.-H. Mou, M.-F. Chang, C.-K. Liao, Y.-H. Hsu, S.-H. Tseng, and L.-C. Fu, “Context-aware assisted interactive robotic walker for parkinson’s disease patients,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012, pp. 329–334.
[23] M. Suteerawattananon, G. Morris, B. Etnyre, J. Jankovic, and E. Protas, “Effects of visual and auditory cues on gait in individuals with parkinson’s disease,” Journal of the neurological sciences, vol. 219, no. 1, pp. 63–69, 2004.
[24] In-Step Mobility Products Corp. The u-step ii walking stabilizer. [Online]. Available: http://www.ustep.com/walker_en.html
[25] J. J. Miller, “Projection and actuation device for a walking stabilizer,” Feb. 3 2009, uS Patent 7,484,740.
[26] In-Step Mobility Products Corp. Lasercane for parkinson’s and other neurological conditions. [Online]. Available: http://www.ustep.com/cane.htm
[27] Next StepR. Nextstep visual cue walking aid. [Online]. Available: http://www.icanstep.com/
[28] J. P. Martin and L. Hurwitz, “Locomotion and the basal ganglia,” Brain, vol. 85, no. 2, pp. 261–276, 1962.
[29] Y. Baram, “Walking on tiles,” Neural processing letters, vol. 10, no. 2, pp. 81–87, 1999.
[30] Y. Baram, J. Aharon-Peretz, Y. Simionovici, and L. Ron, “Walking on virtual tiles,” Neural processing letters, vol. 16, no. 3, pp. 227–233, 2002.
[31] C. Raymond, “Closed-loop vr-based interaction to improve walking in parkinson’s disease,” Journal of Novel Physiotherapies, 2011.
[32] H.-K. Wu, H.-R. Chen, and C.-H. Yu, “Development of posterior walker with adjustable visual cues to improve gait performance for patients with parkinson’s disease,” in 2010 36th Annual Conference on IEEE Industrial Electronics Society. IEEE, 2010, pp. 1512–1516.
[33] M. Thaut, G. McIntosh, R. Rice, R. Miller, J. Rathbun, and J. Brault, “Rhythmic auditory stimulation in gait training for parkinson’s disease patients,” Movement disorders, vol. 11, no. 2, pp. 193–200, 1996.
[34] J. M. Hausdorff, J. Lowenthal, T. Herman, L. Gruendlinger, C. Peretz, and N. Giladi, “Rhythmic auditory stimulation modulates gait variability in parkinson’s disease,” European Journal of Neuroscience, vol. 26, no. 8, pp. 2369–2375, 2007.
[35] M. H. Thaut and M. Abiru, “Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research,” vol. 27, no. 4, pp. 263–269, 2010.
[36] H. Uchitomi, Y. Miyake, S. Orimo, Y. Wada, K. Suzuki, M. J. Hove, and T. Nishi, “Interpersonal synchrony-based dynamic stabilization in walking rhythm of parkinson’s disease,” in 2011 IEEE/ICME International Conference on Complex Medical Engineering. IEEE, 2011, pp. 614–620.
[37] J. Parkinson, An essay on the shaking palsy. Printed by Whittingham and Rowland for Sherwood, Neely, and Jones, 1817.
[38] M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression, and mortality,” Neurology, vol. 50, no. 2, pp. 318–318, 1998.
[39] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981.
[40] SOFTKINETICc. Depth sense camera ds325. [Online]. Available: http://www.softkinetic.com/en-us/products/depthsensecameras.aspx
[41] D. Cunado, M. S. Nixon, and J. N. Carter, “Automatic extraction and description of human gait models for recognition purposes,” Computer Vision and Image Understanding, vol. 90, no. 1, pp. 1–41, 2003.
[42] L. Xuejun, Z. Meng, and Z. Lingxia, “The study for dynamic model of gait,” in 2011 IEEE 14th International Conference on Computational Science and Engineering. IEEE, 2011, pp. 551–554.
[43] Barbeau A., “Parkinson’s disease: clinical features and etiopathology,” In: Vinken PJ, Bruyn GW, Klawans HL, editors. Handbook of clinical neurology, vol. 49, no. 2, pp. 87–152, 1986.
[44] Martin JP., “Locomotion and the basal ganglia,” The basal ganglia and posture, 1967.
[45] A. M. Johnson and Q. Almeida, “The impact of exercise rehabilitation and physical activity on the management of parkinson’s disease,” Geriatrics and Aging, vol. 10, no. 5, p. 318, 2007.
[46] PhaseSpace Inc. Phasespace 3d motion capture system. [Online]. Available:http://www.phasespace.com/
[47] Institutional review board approval number: 201012059db.
[48] J. M. Hausdorff, D. A. Rios, and H. K. Edelberg, “Gait variability and fall risk in community-living older adults: a 1-year prospective study,” Archives of physical medicine and rehabilitation, vol. 82, no. 8, pp. 1050–1056, 2001.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔