|
[1] S. Agarwal, R. Ramamoorthi, S. Belongie, and H. W. Jensen. Structured importance sampling of environment maps. ACM Trans. Graph. (Proc. SIGGRAPH 03), 22(3):605–612, July 2003. [2] M. Agrawala, R. Ramamoorthi, A. Heirich, and L. Moll. Efficient image-based methods for rendering soft shadows. In Proc. 27th annual conference on Computer graphics and interactive techniques (SIGGRAPH 00), pages 375–384, 2000. [3] A. Arbree. Scalable And Heterogeneous Rendering Of Subsurface Scattering Materials. PhD thesis, Cornell University, Oct. 2009. [4] A. Arbree, B.Walter, and K. Bala. Single-pass scalable subsurface rendering with lightcuts. Computer Graphics Forum (Proc. Eurographics 08), pages 507–516, 2008. [5] K. Bala, B. Walter, and D. P. Greenberg. Combining edges and points for interactive high-quality rendering. ACM Trans. Graph. (Proc. SIGGRAPH 03), 22(3):631–640, 2003. [6] F. Banterle and A. Chalmers. A fast translucency appearance model for real-time applications. In Proc. Spring Conference on Computer Graphics (SCCG 2006), April 2006. [7] T. Bashford-Rogers, K. Debattista, C. Harvey, and A. Chalmers. Approximate visibility grids for interactive indirect illumination. In Proc. 3rd International Conference on Games and Virtual Worlds for Serious Applications, pages 55–62, 2011. [8] P. Bauszat, M. Eisemann, and M. Magnor. Guided image filtering for interactive highquality global illumination. In Proc. 22nd Eurographics conference on Rendering (EGSR 11), pages 1361–1368, 2011. [9] A. Ben-Artzi, R. Ramamoorthi, and M. Agrawala. Efficient shadows for sampled environment maps. J. Graphics Tools, pages 13–36, 2006. [10] T. Blu and F. Luisier. The SURE-LET approach to image denoising. IEEE Transactions on Image Processing, 16(11):2778–2786, 2007. [11] S. Boulos. How often do shadow rays hit? Ray Tracing News, 23(1), July 2010. [12] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR 05), pages 60–65, 2005. [13] D. Burke, A. Ghosh, and W. Heidrich. Bidirectional importance sampling for direct illumination. In Proc. 16th Eurographics conference on Rendering Techniques (EGSR 05), pages 147–156, 2005. [14] N. A. Carr, J. D. Hall, and J. C. Hart. GPU algorithms for radiosity and subsurface scattering. In Proc. of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, pages 51–59, 2003. [15] C.-W. Chang, W.-C. Lin, T.-C. Ho, T.-S. Huang, and J.-H. Chuang. Real-time translucent rendering using gpu-based texture space importance sampling. Computer Graphics Forum (Proc. Eurographics 08), pages 517–526, 2008. [16] J. Chen, B. Wang, Y. Wang, R. S. Overbeck, J.-H. Yong, and W. Wang. Efficient depth-of-field rendering with adaptive sampling and multiscale reconstruction. Comput. Graph. Forum, 30(6):1667–1680, 2011. [17] Y. Chen, X. Tong, J.Wang, S. Lin, B. Guo, and H.-Y. Shum. Shell texture functions. ACM Trans. Graph. (Proc. SIGGRAPH 04), 23(3):343–353, Aug. 2004. [18] E. Cheslack-Postava, R. Wang, O. Akerlund, and F. Pellacini. Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. (Proc. SIGGRAPH Asia 08), 27(5):128:1–128:10, Dec. 2008. [19] P. H. Christensen, G. Harker, J. Shade, B. Schubert, and D. Batali. Multiresolution radiosity caching for global illumination in movies. In ACM SIGGRAPH 2012 Talks, pages 47:1–47:1, 2012. [20] P. Clarberg and T. Akenine-M‥oller. Exploiting visibility correlation in direct illumination. In Proc. 19th Eurographics conference on Rendering (EGSR 08), pages 1125–1136, 2008. [21] P. Clarberg and T. Akenine-M‥oller. Practical product importance sampling for direct illumination. Computer Graphics Forum (Proc. Eurographics 08), 27(2):681–690, 2008. [22] P. Clarberg, W. Jarosz, T. Akenine-M‥oller, and H. W. Jensen. Wavelet importance sampling: efficiently evaluating products of complex functions. ACM Trans. Graph. (Proc. SIGGRAPH 05), 24(3):1166–1175, July 2005. [23] D. Cline, D. Adams, and P. Egbert. Table-driven adaptive importance sampling. In Proc. 19th Eurographics conference on Rendering (EGSR 08), pages 1115–1123, 2008. [24] D. Cline, P. K. Egbert, J. F. Talbot, and D. L. Cardon. Two stage importance sampling for direct lighting. In Proc. 17th Eurographics conference on Rendering Techniques (EGSR 06), pages 103–113, 2006. [25] C. Dachsbacher and M. Stamminger. Translucent shadow maps. In Proc. 14th Eurographics workshop on Rendering (EGRW 03), pages 197–201, 2003. [26] C. Dachsbacher and M. Stamminger. Reflective shadow maps. In Proc. Symposium on Interactive 3D graphics and games, pages 203–231, 2005. [27] C. Dachsbacher and M. Stamminger. Splatting indirect illumination. In Proc. Symposium on Interactive 3D graphics and games, pages 93–100, 2006. [28] H. Dammertz, D. Sewtz, J. Hanika, and H. P. A. Lensch. Edge-avoiding A’-Trous wavelet transform for fast global illumination filtering. In Proc. the Conference on High Performance Graphics (HPG 10), pages 67–75, 2010. [29] T. Davidoviˇc, J. Kˇriv’anek, M. Haˇsan, P. Slusallek, and K. Bala. Combining global and local virtual lights for detailed glossy illumination. ACM Trans. Graph. (Proc. SIGGRAPH Asia 10), 29(6):143:1–143:8, Dec. 2010. [30] L. M. Delves and J. L. Mohamed, editors. Computational methods for integral equations. Cambridge University Press, New York, NY, USA, 1986. [31] E. D’Eon. A better dipole. Technical report, 2012. [32] E. D’Eon and G. Irving. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. (Proc. SIGGRAPH 11), 30(4):56:1–56:14, July 2011. [33] E. d’Eon, D. Luebke, and E. Enderton. Efficient rendering of human skin. In Proc. 18th Eurographics Conference on Rendering Techniques (EGSR 07), pages 147–157, 2007. [34] Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.-P. Seidel. Real-time indirect illumination with clustered visibility. In Vision, Modeling, and Visualization Workshop, 2009. [35] M. Donikian, B. Walter, K. Bala, S. Fernandez, and D. P. Greenberg. Accurate direct illumination using iterative adaptive sampling. IEEE Transactions on Visualization and Computer Graphics, 12(3):353–364, May 2006. [36] C. Donner and H. W. Jensen. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. (Proc. SIGGRAPH 05), 24(3):1032–1039, July 2005. [37] C. Donner and H. W. Jensen. Rendering translucent materials using photon diffusion. In Proc. 18th Eurographics conference on Rendering Techniques (EGSR 07), pages 243–251, 2007. [38] D. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90:1200–1224, 1995. [39] P. Dutr’e, P. Tole, and D. P. Greenberg. Approximate visibility for illumination computations using point clouds. Technical Report PCG-00-01, Cornell University, june 2000. [40] K. Egan, F. Durand, and R. Ramamoorthi. Practical filtering for efficient ray-traced directional occlusion. ACM Trans. Graph. (Proc. SIGGRAPH Asia 11), 30(6):180:1–180:10, Dec. 2011. [41] K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph., 30(2):9:1–9:13, 2011. [42] K. Egan, Y.-T. Tseng, N. Holzschuch, F. Durand, and R. Ramamoorthi. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. (Proc. SIGGRAPH 09), 28(3):93:1–93:13, 2009. [43] S. Fernandez, K. Bala, and D. P. Greenberg. Local illumination environments for direct lighting acceleration. In Proc. 13th Eurographics workshop on Rendering, pages 7–14, 2002. [44] C. V. Fiorio. Confidence intervals for kernel density estimation. Stata Journal, 4(2):168–179, 2004. [45] I. Georgiev, J. Kˇriv’anek, S. Popov, and P. Slusallek. Importance caching for complex illumination. Computer Graphics Forum (Proc. Eurographics 12), 31(2):701–710, May 2012. [46] A. Ghosh and W. Heidrich. Correlated visibility sampling for direct illumination. Visual Computer, 22(9):693–701, Sept. 2006. [47] Y. Gong, W. Chen, L. Zhang, Y. Zeng, and Q. Peng. GPU-based rendering for deformable translucent objects. Vis. Comput., 24(2):95–103, Jan. 2008. [48] R. Habel, P. H. Christensen, and W. Jarosz. Photon beam diffusion: A hybrid monte carlo method for subsurface scattering. In Proc. 24th Eurographics conference on Rendering Techniques (EGSR 13), 2013. [49] T. Hachisuka, W. Jarosz, and H. W. Jensen. A progressive error estimation framework for photon density estimation. ACM Trans. Graph. (Proc. SIGGRAPH Asia 10), 29(6):144:1–144:12, 2010. [50] T. Hachisuka,W. Jarosz, R. P.Weistroffer, K. Dale, G. Humphreys, M. Zwicker, and H.W. Jensen. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. (Proc. SIGGRAPH 08), 27(3):33:1–33:10, 2008. [51] X. Hao and A. Varshney. Real-time rendering of translucent meshes. ACM Trans. Graph., 23(2):120–142, Apr. 2004. [52] D. Hart, P. Dutr’e, and D. P. Greenberg. Direct illumination with lazy visibility evaluation. In Proc. 26th annual conference on Computer graphics and interactive techniques (SIGGRAPH 99), pages 147–154, 1999. [53] M. Haˇsan, J. Kˇriv’anek, B. Walter, and K. Bala. Virtual spherical lights for many-light rendering of glossy scenes. ACM Trans. Graph. (Proc. SIGGRAPH Asia 09), 28(5):143:1–143:6, Dec. 2009. [54] M. Haˇsan, F. Pellacini, and K. Bala. Matrix row-column sampling for the many-light problem. ACM Trans. Graph. (Proc. SIGGRAPH 07), 26(3), July 2007. [55] T. Ize and C. D. Hansen. RTSAH traversal order for occlusion rays. Computer Graphics Forum (Proc. Eurographics 11), 30(2):297–305, 2011. [56] W. Jarosz, N. A. Carr, and H.W. Jensen. Importance sampling spherical harmonics. Computer Graphics Forum (Proc. Eurographics 09), 28(2):577–586, Apr. 2009. [57] H. W. Jensen and J. Buhler. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. (Proc. SIGGRAPH 02), 21(3):576–581, July 2002. [58] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan. A practical model for subsurface light transport. In Proc. 28th annual conference on Computer graphics and interactive techniques (SIGGRAPH 01), pages 511–518, 2001. [59] J. T. Kajiya. The rendering equation. In Proc. 13th annual conference on computer graphics and interactive techniques (SIGGRAPH 86), pages 143–150, 1986. [60] A. Keller. Instant radiosity. In Proc. 24th annual conference on Computer graphics and interactive techniques (SIGGRAPH 97), pages 49–56, 1997. [61] S.-L. Keng, W.-Y. Lee, and J.-H. Chuang. An efficient caching-based rendering of translucent materials. Vis. Comput., 23(1):59–69, Dec. 2006. [62] A. King, C. Kulla, A. Conty, and M. Fajardo. BSSRDF importance sampling. In ACM SIGGRAPH 2013 Talks, pages 48:1–48:1, 2013. [63] T. Kollig and A. Keller. Efficient illumination by high dynamic range images. In Proc. 14th Eurographics workshop on Rendering, pages 45–50, 2003. [64] T. Kollig and A. Keller. Illumination in the presence of weak singularities. In MCQMC Methods, 2004. [65] J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi. Efficient BRDF importance sampling using a factored representation. ACM Trans. Graph. (Proc. SIGGRAPH 04), 23(3):496–505, Aug. 2004. [66] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. (Proc. SIGGRAPH 11), 30(4):55:1–55:12, 2011. [67] J. Lehtinen, T. Aila, S. Laine, and F. Durand. Reconstructing the indirect light field for global illumination. ACM Trans. Graph. (Proc. SIGGRAPH 12), 31(4):51:1–51:10, 2012. [68] J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F. X. Sillion, and T. Aila. A meshless hierarchical representation for light transport. ACM Trans. Graph. (Proc. SIGGRAPH 08), 27(3):37:1–37:9, Aug. 2008. [69] H. P. A. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Magnor, J. Lang, and H.-P. Seidel. Interactive rendering of translucent objects. In Proc. 10th Pacific Conference on Computer Graphics and Applications (PG 02), 2002. [70] H. Li, F. Pellacini, and K. E. Torrance. A hybrid monte carlo method for accurate and efficient subsurface scattering. In Proc. Sixteenth Eurographics conference on Rendering Techniques (EGSR 05), pages 283–290, 2005. [71] T. Mertens, J. Kautz, P. Bekaert, F. Van Reeth, and H.-P. Seidel. Efficient rendering of local subsurface scattering. In Proc. 11th Pacific Conference on Computer Graphics and Applications (PG 03), 2003. [72] D. P. Mitchell. Generating antialiased images at low sampling densities. In Proc. 14th annual conference on Computer graphics and interactive techniques (SIGGRAPH 87), pages 65–72, 1987. [73] D. P. Mitchell. Spectrally optimal sampling for distribution ray tracing. In Proc. 18th annual conference on Computer graphics and interactive techniques (SIGGRAPH 91), pages 157–164, 1991. [74] A. Mu&;#732;noz, J. I. Echevarria, F. J. Ser’on, and D. Gutierrez. Convolution-based simulation of homogeneous subsurface scattering. Comput. Graph. Forum, 30(8):2279–2287, 2011. [75] S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. (Proc. SIGGRAPH 06), 25(3):1003–1012, July 2006. [76] G. Nichols and C. Wyman. Multiresolution splatting for indirect illumination. In Proc. Symposium on Interactive 3D graphics and games, pages 83–90, 2009. [77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Radiometry. chapter Geometrical considerations and nomenclature for reflectance, pages 94–145. 1992. [78] J. Nov’ak, T. Engelhardt, and C. Dachsbacher. Screen-space bias compensation for interactive high-quality global illumination with virtual point lights. In Proc. Symposium on Interactive 3D graphics and games, pages 119–124, 2011. [79] J. Ou. Sampling for Complexity in Rendering. PhD thesis, Dartmouth college, Hanover, New Hampshire, May 2013. [80] J. Ou and F. Pellacini. LightSlice: matrix slice sampling for the many-lights problem. ACM Trans. Graph. (Proc. SIGGRAPH Asia 11), 30(6):179:1–179:8, Dec. 2011. [81] R. S. Overbeck, C. Donner, and R. Ramamoorthi. Adaptive wavelet rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia 09), 28(5):140:1–140:12, 2009. [82] M. Pharr and G. Humphreys. Physically Based Rendering, Second Edition: From Theory To Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2nd edition, 2010. [83] R. Ramamoorthi, J. Anderson, M. Meyer, and D. Nowrouzezahrai. A theory of monte carlo visibility sampling. ACM Trans. Graph., 31(5):121:1–121:16, Sept. 2012. [84] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel, C. Dachsbacher, and J. Kautz. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. (Proc. SIGGRAPH Asia 08), 27(5):129:1–129:8, Dec. 2008. [85] T. Ritschel, T. Grosch, and H.-P. Seidel. Approximating dynamic global illumination in image space. In Proc. Symposium on Interactive 3D graphics and games, pages 75–82, 2009. [86] F. Rousselle, P. Clarberg, L. Leblanc, V. Ostromoukhov, and P. Poulin. Efficient product sampling using hierarchical thresholding. Visual Computer, 24(7):465–474, July 2008. [87] F. Rousselle, C. Knaus, and M. Zwicker. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. (Proc. SIGGRAPH Asia 11), 30(6):159:1-159:12, 2011. [88] B. Segovia, J. C. Iehl, R. Mitanchey, and B. P’eroche. Non-interleaved deferred shading of interleaved sample patterns. In Proc. 21st ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, pages 53–60, 2006. [89] P. Sen and S. Darabi. On filtering the noise from the random parameters in Monte Carlo rendering. ACM Trans. Graph., 31(3):18:1–18:15, 2012. [90] M. A. Shah, J. Konttinen, and S. Pattanaik. Image-space subsurface scattering for interactive rendering of deformable translucent objects. IEEE Comput. Graph. Appl., 29(1):66–78, Jan. 2009. [91] Y. Sheng, Y. Shi, L. Wang, and S. G. Narasimhan. A practical analytic model for the radiosity of translucent scenes. In Proc. symposium on Interactive 3D graphics, 2013. [92] P. Shirley, T. Aila, J. Cohen, E. Enderton, S. Laine, D. Luebke, and M. McGuire. A local image reconstruction algorithm for stochastic rendering. In Proc. Symposium on Interactive 3D graphics and games, pages 9–14, 2011. [93] P. Shirley, C.Wang, and K. Zimmerman. Monte Carlo techniques for direct lighting calculations. ACM Trans. Graph., 15(1):1–36, Jan. 1996. [94] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. (Proc. SIGGRAPH 03), 22(3):382–391, July 2003. [95] P.-P. Sloan, B. Luna, and J. Snyder. Local, deformable precomputed radiance transfer. ACM Trans. Graph. (Proc. SIGGRAPH 05), 24(3):1216–1224, July 2005. [96] C. Soler, K. Subr, F. Durand, N. Holzschuch, and F. Sillion. Fourier depth of field. ACM Trans. Graph., 28(2):18:1–18:12, 2009. [97] C. M. Stein. Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 9(6):1135–1151, 1981. [98] J. Steinhurst and A. Lastra. Global importance sampling of glossy surfaces using the photon map. In Proc. IEEE Symposium on Interactive Ray Tracing, pages 133–138, 2006. [99] A. J. Stewart and T. Karkanis. Computing the approximate visibility map, with applications to form factors and discontinuity meshing. In Proc. 9th Eurographics workshop on Rendering, pages 57–68, 1998. [100] J. F. Talbot, D. Cline, and P. Egbert. Importance resampling for global illumination. In Proc. 16th Eurographics conference on Rendering Techniques (EGSR 05), pages 139–146, 2005. [101] R. Tamstorf and H. W. Jensen. Adaptive sampling and bias estimation in path tracing. In Proc. 8th Eurographics workshop on Rendering, pages 285–295, 1997. [102] X. Tong, J. Wang, S. Lin, B. Guo, and H.-Y. Shum. Modeling and rendering of quasihomogeneous materials. ACM Trans. Graph. (Proc. SIGGRAPH 05), 24(3):1054–1061, July 2005. [103] D. Van De Ville and M. Kocher. SURE-based non-local means. IEEE Signal Processing Letters, 16(11):973–976, 2009. [104] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, 1998. [105] E. Veach and L. Guibas. Bidirectional estimators for light transport. In Proc. 5th Eurographics workshop on Rendering”, pages 147–162, June 1994. [106] B. Walter, A. Arbree, K. Bala, and D. P. Greenberg. Multidimensional lightcuts. ACM Trans. Graph. (Proc. SIGGRAPH 06), 25(3):1081–1088, July 2006. [107] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D. P. Greenberg. Lightcuts: a scalable approach to illumination. ACM Trans. Graph. (Proc. SIGGRAPH 05), 24(3):1098–1107, July 2005. [108] B. Walter, P. Khungurn, and K. Bala. Bidirectional lightcuts. ACM Trans. Graph. (Proc. SIGGRAPH 12), 31(4):59:1–59:11, July 2012. [109] R. Wang and O. A° kerlund. Bidirectional importance sampling for unstructured direct illumination. Computer Graphics Forum (Proc. Eurographics 09), 28(2):269–278, Apr. 2009. [110] R. Wang, J. Tran, and D. Luebke. All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Graph. (Proc. SIGGRAPH 05), 24(3):1202–1207, July 2005. [111] Y.-T.Wu and Y.-Y. Chuang. VisibilityCluster: Average directional visibility for many-light rendering. IEEE Transactions on Visualization and Computer Graphics, 19(9):1566–1578, Sept. 2013. [112] R. Xu and S. N. Pattanaik. A novel Monte Carlo noise reduction operator. IEEE Computer Graphics and Applications, 25(2):31–35, 2005. [113] L.-Q. Yan, Y. Zhou, K. Xu, and R. Wang. Accurate translucent material rendering under spherical gaussian lights. Comp. Graph. Forum, 31(7pt2):2267–2276, Sept. 2012. [114] I. Yu, A. Cox, M. H. Kim, T. Ritschel, T. Grosch, C. Dachsbacher, and J. Kautz. Perceptual influence of approximate visibility in indirect illumination. ACM Trans. Appl. Percept., 6(4):24:1–24:14, Oct. 2009.
|