(54.236.58.220) 您好!臺灣時間:2021/02/28 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝曼君
研究生(外文):Man-Chun hsieh
論文名稱:網路作家寫作風格與人氣指數分析之研究-以痞克邦部落格為例
論文名稱(外文):On the Relationship between Writing Style and Popularity of a Chinese Weblog: The Case of Pixnet
指導教授:莊裕澤莊裕澤引用關係
指導教授(外文):Yuh-Jzer Joung
口試委員:孔令傑陳建錦
口試委員(外文):Ling-Chieh KungChien-Chin Chen
口試日期:2014-07-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:部落格分析人氣指標文章特徵寫作風格
外文關鍵詞:Weblog AnalysisPopularityArticle AttributesWriting Style
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  網際網路之發達,經營個人部落格站台已成為全民運動,許多部落客汲汲追求部落格的參訪人數,透過一個部落格的累計人氣數字,可做為判斷一個部落格經營成效的數據。然而,在整個部落格生態圈,有著明顯的人氣高低落差,超人氣部落格拜訪人氣上看千萬人次,而一般使用者的網誌參觀人氣多半以累計人氣萬人以下為主。
  本篇論文欲以寫作風格的角度切入,主要目的為找出明顯地影響中文網誌人氣高低的寫作特徵,分析特徵對於人氣的影響程度,進一步深入探究原因。本研究蒐集痞克邦(Pixnet)上100位使用者過去所有產生的網誌文章,並根據本研究所提出的四大構面:文字層面、句子層面、語意層面、文件層面,計算共11項的寫作特徵,透過統計方法中的變異數分析與相關係數與敘述性統計,分析文章特徵與人氣之間的顯著性與相關性。
  本研究發現在一般性的特徵上,標點符號、用字深淺、詞性、句子長度、文章正負情緒與人氣高低具備明顯的相關性,在分類特徵上,文章分類和哈工大同義詞詞林與人氣高低具備明顯的相關性,並針對痞克邦上使用者提出一套寫作風格上的改善建議,最後,透過各項特徵進行文章歸屬於哪一種人氣群組的預測。

In recent years, the Internet has been getting more and more popular. For most people, it is a convenient way to build their own personal weblog. Often, people work to get more and more popularity for their weblogs; therefore, one method used to assess a blog’s performance is its popularity. However, there are significant gaps between those classified as being of low popularity compared to those of high popularity. High popularity weblogs can attract more than tens of thousands of visitors within a day. Conversely, those of low popularity usually have visitors numbering in the hundreds or tens per day.
In this thesis, we propose a strategy which uses a bloggers’ writing style to evaluate: Which attributes of blog’s writing style influence its popularity? To what degree is a blog’s popularity impacted by these factors? What are the main reasons for the variable levels of popularity? In this study, we analyzed 100 authors on Pixnet and collected data regarding their blog content from past to present. We propose 11 attributes from four perspectives including word level, sentence level, segment level, and document level to calculate an analysis of variation and correlation coefficients in order to analyze relevance between these attributes and popularity.
According to our research, regarding general attributes, we find that punctuation, degrees of words, part of speeches, sentence length, articles with positive segment words, and articles with negative segment words significantly influence an article’s popularity. In terms of classification attributes, classification of articles and HIT-CIR Tongyici Cilin are obviously related to popularity. Based on our findings, we have made some suggestions on how to improve popularity using certain writing styles on the Chinese weblog Pixnet and demonstrate the accuracy for classifying articles based on attributes.

目錄
論文口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
圖目錄 vi
表目錄 vii
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 4
第二章、文獻探討 5
2.1 部落格 5
2.2文章特徵 9
2.3相關技術文獻探討 12
2.4小結 21
第三章、研究方法 23
3.1 研究問題 23
3.2 研究架構 23
3.3 研究假說 36
第四章、研究結果 38
4.1 敘述統計分析 38
4.2 特徵分析 45
4.3 模型應用 70
4.4 小結 72
第五章、結論 75
5.1 研究成果 75
5.2 研究貢獻 76
5.3 研究限制 77
5.4 未來研究方向 78
參考文獻 79

An, J. X., Huang, J., &; Yu, W. (2011). Algorithm of Disambiguation and Matching of Chinese Word Segmentation in Connected Strategies Research. Advanced Materials Research, 219-220, 1702-1706.
Ashok, V. G., Feng, S., &; Choi, Y. (2013). Success with Style: Using Writing Style to Predict the Success of Novels. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Washington, USA.
Can, F., &; Patton, J. M. (2004). Change of Writing Style with Time. Computers and Humanities, 38(1), 61-82.
Carmel, D., Roitman, H., &; Yom-Tov, E. (2012). On the Relationship between Novelty and Popularity of User-Generated Content. ACM Transactions on Intelligent Systems and Technology (TIST), 3(4).
Chang, P. C., Tseng, H., Jurafsky, D., &; Manning, C. D. (2009). Discriminative Reordering with Chinese Grammatical Relations Features. Proceedings of the Third Workshop on Syntax and Structure in Statistical Translation, Boulder, Colorado.
Chen, K. J., &; Ma, W. Y. (2002). Unknown Word Extraction for Chinese Documents. Proceedings of the 19th international conference on Computational linguistics - Volume 1, Taipei, Taiwan.
Chen, S. C. (2010). The Key Success Factors for the Popular Blog. Nanhua University.
Du, H. S., &; Wagner, C. (2006). Weblog success: Exploring the role of technology. International Journal of Human-Computer Studies, 64(9), 789-798.
Duan, Y., Jiang, L., Qin, T., Zhou, M., &; Shum, H. Y. (2010). An empirical study on learning to rank of tweets. In Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, China.
Garden, M. (2012). Defining blog: A fool’s errand or a necessary undertaking. Journalism, 13(4), 483-499.
Herring, S. C. (2013). Discourse in Web 2.0: Familiar, reconfigured, and emergent. Deborah Tannen, Anna M. Trester (Eds.), Georgetown University Round Table on Languages and Linguistics 2011: Discourse 2.0: Language and New Media., Washington, DC.
Huang, W. C., Wu, S. H., Chen, L. P., &; Ku, T. (2011). Feature analysis of Chinese textual entailment system. In ROCLING 2011 Poster Papers.
Kaplan, A. M., &; Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of social media. Business Horizons, 53(1), 59-68.
Ma, W. Y., &; Chen, K. J. (2003). A Bottom-up Merging Algorithm for Chinese Unknown Word Extraction. Proceedings of the Second SIGHAN Workshop on Chinese Language Processing, Sapporo, Japan.
ReadWriteThink. (2009). Definition Style. Retrieved December 4, 2013, from http://www.readwritethink.org/files/resources/lesson_images/lesson209/definition_style.pdf
Safran, C., &; Kappe, F. (2008). Success factors in a weblog community. Journal of Universal Computer Science, 14(4), 546-556.
Shen, C. Y. (2006). BLOG Metrics Construction Research─Used Chinese BLOG for Example. National Tsing Hua University.
Shih, B. J. (2009). Key Success Factor of Blog Management. TAJEN University.
Sun, Y. T., Chen, C. L., Liu, C. C., Liu, C. L., &; Soo, V. W. (2010). Sentiment Classification of Short Chinese Sentences. In Proceedings of ROCLING.
Tatar, A., Leguay, J., Antoniadis, P., Limbourg, A., de Amorim, M. D., &; Fdida, S. (2011). Predicting the popularity of online articles based on user comments. Proceedings of the International Conference on Web Intelligence, Mining and Semantics.
Tsai, C. H. (1996). MMSEG: A Word Identification System for Mandarin Chinese Text Based on Two Variants of the Maximum Matching Algorithm. from Available: http://technology.chtsai.org/mmseg/
Xu, L., Zhang, Q., Wang, D. D., &; Zhang, J. (2011). Research of Chinese Segmentation Based on MMSeg and Double Array TRIE. Advanced Materials Research, 225-226, 945-948.
Yang, S. S., Wu, S. H., Chen, L. P., Chiu, H. S., &; Yang, R. D. (2013). Entailment Analysis for Improving Chinese Recognizing Textual Entailment System. International Journal of Computational Linguistics and Chinese Language Processing, 18(4), 1-16.
Yang, X., Jin, P., &; Xiang, W. (2011). Exploring Word Similarity to Improve Chinese Personal Name Disambiguation. 2011 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Lyon.
Yu, H. C., Huang, T. H. K., &; Chen, H. H. (2012). Domain Dependent Word Polarity Analysis for Sentiment Classification International Journal of Computational Linguistics and Chinese Language Processing, 17(4), 33-48.
Zeng, Y. C., Klyuev, V., &; Wu, S. H. (2012). An Opinion Mining Technique For Chinese Blogs Future Information Technology, Application, and Service (Vol. 164, pp. 281-289): Springer Netherlands.
馬偉雲, 謝佑明, 楊昌樺, &;陳克健. (2001). 中文語料庫構建及管理系統設計. ROCLING 第十四屆計算語言學研討會論文集, pp. 175-191.
梅家駒, 竺一鳴, 高蘊琦, &;殷鴻翔. (1996). 同義詞詞林. 上海: 上海辭書出版社.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔