|
一、英文部分 【1】Han, J &; Kamber, M.(2001). Data Mining Concepts and Techniques. San Francisco: Morgan Kaufmann Publishers. 【2】Fayyad, U., Piatetsky-Shapiro, G. &; Smyth, P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communication of the ACM, 39, 27-34. 【3】Fayyad, U. &; Stolorz, P. (1997). Data mining and KDD: Promise and Challenges. Future Generation Computer Systems, 13, 99-115. 【4】Cabena, P., Hadjinian, P. O., R. Stadler, DR. J. Verhees, and. Zanasi, A. (1997). Discovering Data Mining from Concept to Implementation. Prentice Hall. 【5】Kagami., Iwamoto. &; Tani (2008). Application of datamining method (ID3) to data analysis for ultra deep hydrodesulfurization of straight-run light gas oil—determination of effective factor of the feed properties to reaction rate of HDS. Fuel, Vol84 no.2-3, 279-285. 【6】Berry, M.J.A. and G. Linoff (1997) . Data Mining Techniques:For Marketing, Sales, and Customer Support, New York:John Wiley &; Sons 【7】Hirst, E. (1996). The future of DSM in a restructured US electricity industry. Energy Policy, 24, 303-315. 【8】Nadel, S. &; Geller, H. (1996). Utility DSM. What hava we learned? Where are we going? Energy Policy, 24, 289-302. 【9】Dean, J. &; Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters. Google Research Publications. 【10】Ghemawat, S. &; Gobioff, H. (2003). The Google File System. Google Research Publications. 【11】White, T. (2012). Hadoop: the definitive guide. O’REILLY. 【12】Agrawal, R. &; Srikant, R. (1994). Fast Algorithms for Mining Association Rules. Proceedings of 1994 International Conference on Very Large Data Bases, 487-499. 【13】Agrawal, R. &; Srikant, R. (1995). Mining Sequential Patterns. Proceedings of 1995 International Conference on Data Engineering, 3-14. 【14】Srikant, R. &; Agrawal, R. (1996) Mining Sequential Patterns: Generalizations and Performance Improvements. EDBT, 3-14. 【15】Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. &; Hsu, M. C. (2000). FreeSpan: Frequent Pattern-Projected Sequential Pattern Mining. Proc. 2000 Int. Conf. on Knowledge Discovery and Data Mining, 355-359. 【16】Pei, J., Han, J., Printo, H., Chen, Q., Dayal, U. &; Hsu, M. C., (2001) PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. Proc. 2001 Int. Conf. on Data Engineering (ICDE’01). 【17】Chen, Y. L., Chiang, M. C., &; Ko, M. T. (2003). Discovering time-interval sequential patterns in sequence databases. Expert Systems with Applications,25(3), 343-354. 【18】Das, G., Lin, K. I., Mannila, H., Renganathan, G., &; Smyth, P. (1998, August). Rule Discovery from Time Series. In KDD (Vol. 98, pp. 16-22). 【19】Lonardi, J. L. E. K. S., &; Patel, P. (2002). Finding motifs in time series. InProc. of the 2nd Workshop on Temporal Data Mining (pp. 53-68). 【20】Lin, J., Keogh, E., Lonardi, S., &; Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery (pp. 2-11). ACM. 【21】Chiu, B., Keogh, E., &; Lonardi, S. (2003, August). Probabilistic discovery of time series motifs. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 493-498). ACM. 【22】Keogh, E., &; Lin, J. (2005). Clustering of time-series subsequences is meaningless: implications for previous and future research. Knowledge and information systems, 8(2), 154-177. 【23】Tanaka, Y., Iwamoto, K., &; Uehara, K. (2005). Discovery of time-series motif from multi-dimensional data based on MDL principle. Machine Learning, 58(2-3), 269-300. 【24】Yankov, D., Keogh, E., Medina, J., Chiu, B., &; Zordan, V. (2007, August). Detecting time series motifs under uniform scaling. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 844-853). ACM. 【25】Minnen, D., Isbell, C., Essa, I., &; Starner, T. (2007, October). Detecting subdimensional motifs: An efficient algorithm for generalized multivariate pattern discovery. In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on (pp. 601-606). IEEE. 【26】Tang, H., &; Liao, S. S. (2008). Discovering original motifs with different lengths from time series. Knowledge-Based Systems, 21(7), 666-671. 【27】Mueen, A., Keogh, E., &; Bigdely-Shamlo, N. (2009, December). Finding time series motifs in disk-resident data. In Data Mining, 2009. ICDM''09. Ninth IEEE International Conference on (pp. 367-376). IEEE.. 【28】Yi, B. K., Jagadish, H. V., &; Faloutsos, C. (1998, February). Efficient retrieval of similar time sequences under time warping. In Data Engineering, 1998. Proceedings., 14th International Conference on (pp. 201-208). IEEE 二、中文部分 【29】台灣電力公司業務處 (1993) ,「表燈用電負載管理策略之研究」,台 灣電力公司八十二年度研究發展專題報告。 【30】台灣電力公司綜合研究所 (1991),「負載管理價格需求彈性對用電特性之影響」,台灣電力公司八十年度研究報告。 【31】台灣電力公司綜合研究所 (2008) ,「97年度家用電器普及狀況調查」,台灣電力公司九十八年度研究報告。 【32】台灣電力公司綜合研究所 (2010) ,「99年度家用電器普及狀況調查」,台灣電力公司一百年度研究報告。 【33】台灣電力公司綜合研究所 (2007) ,「可停電力潛在用戶探勘分析決策支援系統之建構」,台灣電力公司九十六年度研究報告。 【34】台灣電力公司綜合研究所 (2010) ,「智慧電網下住宅時間電價研訂策略之研究」,台灣電力公司一百年度研究報告。 【35】王派洲譯 (2008),「資料探勘:概念與方法2/e」,滄海書局 【36】王耀聰、辜文元、周天穎、衷嵐焜譯(2013),TomWhite著,「Hadoop技術手冊-第三版」,歐萊禮(O’REILLY)。
|