跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:秦鈺棋
研究生(外文):Yu-Chi Chin
論文名稱:不同空間尺度下河川生態環境因子與無脊椎動物群落指標的關係
論文名稱(外文):Relationships between environmental factors and macroinvertebrate community indicators acrossspatial scales in rivers
指導教授:任秀慧任秀慧引用關係
口試委員:余化龍胡明哲
口試日期:2013-12-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:98
中文關鍵詞:大型無脊椎動物空間結構理化因子河川階層高層淺瀨棲地品質搖蚊科小蜉科紋石蛾科
外文關鍵詞:macroinvertebratespatial structurephysiochemical variablesstream hierarchyaltituderiffle qualityChironomidaeEphemerellidaeHydropsychidae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
溪流河川系統為一個階層的系統,受到不同空間尺度的交互作用所影響。河川棲地與水中生物群落都受到階層系統的影響,而受不同空間尺度其環境因子的作用。對於溪流河川系統管理而言,了解河川棲地和水中生物群落在不同空間尺度下之關係變化,可更深入的認識溪流河川生態系統的作用及模式。本研究目標是探討河川生態環境與生物群落之間的關係於不同空間尺度下之變化。研究的生物指標為具多樣化生態特性且可反映河川系統功能的底棲大型無脊椎動物群落。研究地點為美國馬里蘭州,分析的數據採用馬里蘭河川生物調查的資料(MBSS),採樣期間為1995-1997,研究樣點共422個(18個流域)。分析資料包含23個環境因子以及82個生物因子。本次研究在空間尺度上針對state、subregion和catchment三種尺度分別作探討。研究方法使用多變量統計分析以探討不同空間尺度下其環境特性、底棲大型無脊椎動物群落結構組成及環境因子與底棲大型無脊椎動物群落結構之間的關係等。主成分分析研究結果發現高層對於不同空間尺度的環境下,對其環境的變異程度均有影響。另外,從多維度分析研究發現到搖蚊科(Chironomidae)不僅是任何空間尺度下的優勢種,對於不同空間尺度下的底棲大型無脊椎動物群落結構的變異程度也都有影響。對於底棲大型無脊椎動物群落與環境因子之間的關係,從典型相關分析以及生物和環境相接的逐步分析相關檢定中發現底棲大型無脊椎動物群落受到小尺度的環境因子淺瀨棲地品質優劣影響較大。淺瀨棲地品質是一個小尺度、綜合型的環境因子其探討淺瀨的棲地複雜程度,包含流速、水深及底質。在馬里蘭州,淺瀨棲地品質較高的樣點其底棲大型無脊椎動物群落的豐度以及物種數也較高。底棲大型無脊椎動物群落結構主要受到小尺度的淺瀨棲地品質因子的影響且其生物多樣性也會隨著淺瀨棲地品質增高而增加。研究結果還發現小蜉科(Ephemerellidae)以及紋石蛾科(Hydropsychidae)對於在subregion以及catchment尺度的環境因子具有較高的相關性(ρ=0.285-0.446; ρ=0.506-0.568)。此外,小蜉科對於有機溶解碳以及(DOC)以及水中硫酸鹽濃度也具有高度相關性,而紋石蛾科對於流速、流速-深度多樣性以及淺瀨棲地品質具有高度相關性。因此,本研究提出監測小尺度環境因子其變異程度對於了解生物在河川系統中的反應有很大的重要性,此外,我們亦可以利用小蜉科以及紋石蛾科以作為馬里蘭州的有機汙染與水力狀況之棲地品質的生態指標。

Stream systems are affected by complex processes interacting with each other at multiple scales due to the hierarchical systems. Identifying the relationships between the environment and aquatic communities at different spatial scales is an essential research issues for enhancing our understanding of the ecosystem patterns and processes. In this study, we investigated the relationships between environmental variables and benthic macroinvertebrate communities in river ecosystem at multiple spatial scales including state-, subregion-, and catchment-levels. The data we used were extracted from the Round One Survey of U.S. Maryland Biological Stream Survey (MBSS) database which was conducted during 1995-1997 and comprised of 422 sites in 18 catchments in Maryland. There were 23 environmental variables including 17 physical habitat variables and 6 water chemistry variables and 82 biological taxa containing 78 families and 4 orders of benthic macroinvertebrates. Multivariate statistical analysis was used to determine the variation of environmental characteristics, community compositions of benthic macroinvertebrates, and the relationships of benthic macroinvertebrate communities and environmental variables of multiple spatial scales. Principal component analysis (PCA) results indicated that the altitude was the most important environmental variables on characterizing the environment at multiple scales since altitude was a composite variable of environmental condition. Non-metric multidimensional scaling (NMDS) demonstrated that Chironomidae was the dominant family in Maryland at multiple scales and it also affected the benthic macroinvertebrate community structure across different spatial scales. Canonical correspondence analysis (CCA) and multidimensional overall pattern (BVSTEP) showed that the benthic macroinvertebrate community structure tended to be controlled by the environmental variable such as the riffle habitat quality at catchment-scale (5.03%-40.65%), after then at subregion-scale (2.57%-6.54%) or state-scale (1.86%) due to influences of the riffle habitat quality. Riffle habitat quality was a composite variable simultaneously influential by the velocity, stream depth, and substrate as quantifying the habitat complexity at catchment-scale. Also, higher abundance and richness of the benthic macroinvertebrate communities were found in sites with high riffle habitat quality in Maryland. Therefore, the benthic macroinvertebrate community structure showed higher dependence upon the environmental variables at catchment-scale. Moreover, the results of BVSTEP also presented that Ephemerellidae (ρ=0.285-0.446) and Hydropsychidae (ρ=0.506-0.568) were correlated with the environment at subregion- and catchment-scales. In addition, Ephemerellidae was highly correlated with DOC and SO4 concentration, and Hydropsychidae was particularly correlated with discharge, velocity/depth diversity, and riffle habitat quality. This research suggested that monitoring the variation of the small-scale environmental variables could be essential for understanding the biological response in river ecosystem and we could use Ephemerellidae and Hydropsychidae as the ecological indicators for habitat quality in response to organic pollutions and hydraulic comditions of Maryland freshwater ecosystems.

口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
謝誌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vi
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .viii
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xii
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii
List of appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv
Ch1 Introduction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Ch2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.1 Description of study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
2.2 Data description . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .12
2.2.1 Maryland Biological Stream Survey . . . . . . . . . . . . . . . . . . . . . .12
2.2.2 Environmental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.2.3 Biological data. . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.2.4 Data analysis. . . . . . . . . . . . . . . . . . . . . . . . .16
Ch3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.1 Environmental characteristics at different spatial scales . . . . . . . .21
3.1.1 Whole state-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3.1.2 Subregion-scale and Catchment-scale. . . . . . . . . . . . . . . . . .22
3.1.2.1 The ECP subregion. . . . . . . . . . . . . . . . . . . . . . . . . .22
3.1.2.2 Catchments in the ECP subregion. . . . . . . . . . . . . . .23
3.1.2.3 The WCP subregion. . . . . . . . . . . . . . . . . . . . . . . . . .24
3.1.2.4 Catchments in the WCP subregion. . . . . . . . . . . . . . .26
3.1.2.5 The Pi subregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.1.2.6 Catchments in the Pi subregion. . . . . . . . . . . . . . . . . .28
3.1.2.7 The AP subregion. . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.1.2.8 Catchments in AP subregion. . . . . . . . . . . . . . . . . . . .31
3.2 Benthic macroinvertebrate community structure at different spatial scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.2.1 Whole state-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
3.2.2 Subregion-scale and Catchment-scale. . . . . . . . . . . . . . . . . . .33
3.2.2.1 The ECP subregion. . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.2.2.2 Catchments in the ECP subregion. . . . . . . . . . . . . . . .34
3.2.2.3 The WCP subregion. . . . . . . . . . . . . . . . . . . . . . . . . .35
3.2.2.4 Catchments in the WCP subregion. . . . . . . . . . . . . . .36
3.2.2.5 The Pi subregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.2.2.6 Catchments in the Pi subregion. . . . . . . . . . . . . . . . . .38
3.2.2.7 The AP subregion. . . . . . . . . . . . . . . . . . . . . . . . . . . .39
3.2.2.8 Catchments in the AP subregion. . . . . . . . . . . . . . . . .40
3.3 Relationship between environmental and biological variables at different spatial scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
3.3.1 Whole state-scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
3.3.2 Subregion-scale and Catchment-scale. . . . . . . . . . . . . . . . . . .43
3.3.2.1 The ECP subregion. .. . . . . . . . . . . . . . . . . . . . . . . . .43
3.3.2.2 Catchments in the ECP subregion. . . . . . . . . . . . . . . .44
3.3.2.3 The WCP subregion. . . . . . . . . . . . . . . . . . . . . . . . . .46
3.3.2.4 Catchments in the WCP subregion. . . . . . . . . . . . . . .47
3.3.2.5 The Pi subregion. . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
3.3.2.6 Catchments in Pi subregion. . . . . . . . . . . . . . . . . . . .51
3.3.2.7 The AP subregion. . . . . . . . . . . . . . . . . . . . . . . . . . . .53
3.3.2.8 Catchments in the AP subregion. . . . . . . . . . . . . . . . .54
Ch4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 Environmental characteristics among different spatial scales. . . 57
4.2 Benthic macroinvertebrate communities among different spatial scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 59
4.3 Environmental characteristics vs. Benthic macroinvertebrate community indicators among different spatial scales. . . . . . . . . .60
4.4 Bioassessment indicators. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .62
4.5 Is catchment-scale an appropriate scale as the smallest scale? . .64
Ch5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Allan JD and Flecker AS. 1993. Biodiversity conservation in running waters.
Bioscience 43: 32 – 43.
Allan JD, Erickson DL, and Fay J. 1997. The influence of catchment land use on
stream integrity across multiple spatial scales. Freshwater Biology 37: 149 – 161.
Allan JD. 2004. Landscapes and riverscapes: the influence of land use on stream
ecosystems. Annual Review of Ecology Evolution and Systematics 35: 257 – 284.
Armitage PD, Moss D, Wright JF, and Furse M. 1983. The performance of a new
biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17: 333 – 347.
Bell G, Lechowicz MJ, Appenzeller A, Chandler M, DeBlois E, Jackson L, Mackenzie
B, Preziosi R, Schallenberg M, Tinker N. 1993. The spatial structure of the physical environment. Oecologia 96: 114 – 121.
Bonada N, Prat N, Resh VH, and Statzner B. 2006. Developments in aquatic insect
biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495 – 523.
Borja A and Dauer DM. 2008. Assessing the environmental quality status in estuarine
and coastal systems: comparing methodologies and indices. Ecological Indicators 8: 331 – 337.
Boward D, Kazyak P, Stranko S, Hurd M, and Prochaska A. 1999.From the mountains
to the sea: the state of Maryland’s freshwater streams. Maryland Department of Natural Resources, Monitoring and Non-tidal Assessment Division, U.S. Environmental Protection Agency Publication EPA 903-R-99-023:1-54.
Braak CJF. 1986. Canonical correspondence analysis: a new eigenvector technique for
multivariate direct gradient analysis. Ecology 67: 1167 – 1179.
Braak CJF. 1987. The analysis of vegetation-environment relationships by canonical
correspondence analysis. Vegetatio 69: 69 – 77.
Brook AJ, Haeusler T, Reinfelds I, and Williams S. 2005. Hydraulic microhabitats and
the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50: 331 – 344.
Brosse S, Arbuckle CJ, and Townsend CR. 2003. Habitat scale and biodiversity:
influence of catchment, stream reach and bedform scales on local invertebrate diversity. Biodiversity and Conservation 12: 2057 – 2075.
Brown AV and Brussock PP. 1991. Comparisons of benthic invertebrates between
riffles and pools. Hydrobiologia 220: 99 – 108.
Burneo PC and Gunkel G. 2003. Ecology of high Andean stream, Rio Itambi, Otavalo, Ecuador. Limnologica 33: 29 – 43.
Buss DF, Baptista DF, Silvera MP, Nessimian JL, and Dorville LFM. 2002. Influence
of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia 481: 125 – 136.
Busulwa HS and Bailey RG. 2004. Aspects of the physic-chemical environment of the
Rwenzori rivers, Uganda. African Journal of Ecology 42: 87 – 92.
Cao Y, Bark AW, and Williams WP. 1996. Measuring the responses of
macroinvertebrate communities to water pollution: a comparison of multivariate approaches, biotic and diversity indices. Hydrobiologia 341: 1 – 19.
Carlisle DM, Wolock DM, and Meador MR. 2011. Alteration of streamflow
magnitudes and potential ecological consequences: a multiregional assessment. Frontiers in Ecology and the Environment 9: 265 – 270.
Caro TM and &;#416;doherty G. 1999. On the use of surrogate species in conservation
biology. Conservation Biology 13: 805 – 814.
Chessman BC, Fryirs KA, and Brierley GJ. 2006. Linking geomorphic character,
behavior and condition to fluvial biodiversity: implications for river management. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 267 – 288.
Clarke KR. 1993. Non-parametric multivariate analyses of changes in community
structure. Australian Journal of Ecology 18: 117 – 143.
Clarke KR, Somerfield PJ, and Chapman MG. 2006. On resemblance measures for
ecological studies including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330: 55 – 80.
Clarke KR and Warwick RM. 1998. Quantifying structural redundancy in ecological
communities. Oecologia 113: 278 – 289.
Clarke RT, Wright JF, and Furse MT. 2003. RIVPACS models for predicting the
expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160: 219 – 233.
Cox TF and Cox MAA. 2001. Multidimensional scaling, 2nd edition. Chapman &;
Hall, London.
DePauw N, Gabriels W, and Goethals PLM. 2006. River monitoring and assessment
methods based on macroinvertebrates. Biological monitoring of rivers : 113 – 134.
Doledec S, Phillips N, and Townsend C. 2011. Invertebrate community responses to
land use at broad spatial scale: trait and taxonomic measures compared in New Zealand rivers. Freshwater Biology 56: 1670 – 1688.
Edwards J J. 1981. A brief description of the generalized geology of Maryland.
Maryland Geological Survey Pamphlet Series, Baltimore, Maryland.
EPA (U.S. Environmental Protection Agency). 1987. Handbook of methods for acid
deposition studies: Laboratory analysis for surface water chemistry. EPA-600/4-87/026.
Everard M. 2004. Investing in sustainable catchments. Science of the Total Environment
324: 1 – 24.
Everard M and Powell A. 2002. Rivers as living systems. Aquatic Conservation:
Marine and Freshwater Ecosystems 12: 329 – 337.
Fausch KD, Torgersen CE, Baxter CV, and Li HW. 2002. Landscapes to riverscapes:
bridging the gap between research and conservation of stream fishes. BioScience 52: 483 – 498.
Feld CK and Hering D. 2007. Community structure or function: effects of
environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biology 52: 1380 – 1399.
Friberg N, Skriver J, Larsen SE, Pedersen ML, and Buffagni A. 2010. Stream
macroinvertebrate occurrence along gradients in organic pollution eutrophication. Freshwater Biology 55: 1405 – 1419.
Frimpong EA, Sutton TM, Engel BA, and Simon TP. 2005. Spatial-scale effects on
relative importance of physical habitat predictors of stream health. Environmental Management 36: 899 – 917.
Frissell CA, Liss WJ, Warren CE, and Hurley MD. 1986. A hierarchical framework
for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199 – 214.
Gore JA, Layzer JB, and Mead J. 2001. Macroinvertebrate instream flow studies after
20 years: a role in stream management and restoration. Regulated River: Research &; Management 17: 527 – 542.
Growns IO and Davis JA. 1994. Longitudinal changes in near-bed flows and
macroinvertebrate communities in a western Australian stream. Journal of the North American Benthological Society 13: 417 – 438.
Hall JRLW, Morgan RR, Perry ES, and Waltz A. 2002. Development of a provisional
physical habitat index for Maryland freshwater streams. Environmental Monitoring and Assessment 77: 265 – 291.
Heiri O and Lotter AF. 2003. 9000 years of chironomid assemblage dynamics in an
Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. Journal of Paleolimnology 30: 273 – 289.
Hewlett R. 2000. Implication of taxonomic resolution and sample habitat for stream
classification at a broad geographic scale. Journal of the North American Benthological Society 19: 352 – 361.
Higler LWG and Tolkamp HH. 1983. Hydropsychidae as bio-indicators.
Environmental Monitoring and Assessment 3: 331 – 341.
Hilsenhoff WL. 1988. Rapid field assessment of organic pollution with a family-level
biotic index. Journal of the North American Benthological Society 7:65 – 68.
Jackson JE. 1999. A user’s guide to principal components. John Wiley &; Sons, New
York.
Jacobsen D, Schultz R, and Encalada A. 1997. Structure and diversity of stream
invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology 38: 247 – 261.
Johnson RK, Furse MT, Hering D, and Sandin L. 2007. Ecological relationships
between stream communities and spatial scale: implications for designing catchment-level monitoring programmes. Freshwater Biology 52: 939 – 958.
Jolliffe IT. 2002. Principal component analysis, 2nd edition. Springer-Verlag, New
York.
Li F, Chung N, Bae MJ, Kwon YS, and Park YS. 2012. Relationships between stream
macroinvertebrates and environmental variables at multiple spatial scales. Freshwater Biology 57: 2107 – 2124.
Li F, Chung N, Bae MJ, Kwon YS, Kwon TS, and Park YS. 2013. Temperature
change and macroinvertebrate biodiversity: assessment of organism vulnerability and potential distributions. Climate Change 119: 421 – 434.
Lindermayer DB, Margules CR, and Botkin DB. 2000. Indicators of biodiversity for
ecologically sustainable forest management. Conservation Biology 14: 941 – 950.
Maloney KO and Weller DE. 2011. Anthropogenic disturbance and streams: land use
and land-use change affect stream ecosystems via multiple pathways. Freshwater Biology 56: 611 – 626.
Marchant R. 2002. Do rare species have any place in multivariate analysis for
bioassessment? Journal of the North American Benthological Society 21: 311 – 313.
Marchant R, Barmuta LA, and Chessman BC. 1995. Influence of sample
quantification and taxonomic resolution on the ordination of macroinvertebrate communities from running waters in Victoria, Australia. Marine and Freshwater Research 46: 501 – 506.
MDNR (Maryland Department of Natural Resources). 2005. Maryland wildlife
diversity conservation plan.
MDNR (Maryland Department of Natural Resources). 2007. Maryland biological
stream survey sampling manual: field protocols.
Melles SJ, Jones NE, and Schmidt B. 2012. Review of theoretical developments in
stream ecology and their influence on stream classification and conservation planning. Freshwater Biology 57: 415 – 434.
Mercurio G, Chaillou J C, and Roth N E. 1999. Guide to using 1995–1997 Maryland
biological stream survey data. Maryland Department of Natural Resources. Annapolis, MD.
Milo&;#353;evi&;#263; D, Simi&;#263; V, Stojkovi&;#263; M, &;#268;erbaD, Man&;#269;ev D, Petrovi&;#263; A, and
Paunovi&;#263; M. 2013. Spatio-temporal pattern of the Chironomidae community toward the use of non-biting midges in bioassessment programs. Aquatic Ecology 47: 37 – 55.
Minaya V, McClain ME, Moog O, Omengo F, and Singer GA. 2013. Scale-dependent
effects of rural activities on benthic macroinvertebrates and physic-chemical characteristics in headwater streams of the Mara River, Kenya. Ecological Indicators 32: 116 – 122.
Mykra H, Heion J, and Muotka T. 2007. Scale-related patterns in the spatial and
environmental components of stream macroinvertebrate assemblage variation. Global Ecology and Biogeography 16: 149 – 159.
Norris RH and Thmos M. 1999. What is river health? Freshwater Biology 41: 197 –
209.
Ohio EPA (Ohio Environmental Protection Agency). 1987. Biological criteria for the
protection of aquatic life. Volumes I-III. Ohio EPA, Division of Water Quality Monitoring and Assessment, Surface Water Section, Columbus, Ohio.
Oliver DR. 1971. Life history of the Chironomidae. Annual Review of Entomology 16:
211 – 230.
Osborne LL and Herricks E. 1987. Microhabitat characteristics of Hydropsyche
(Trichoptera: Hydropsychidae) and the importance of body size. Journal of the North American Benthological Society 6: 115 – 124.
Plafkin, JL, Barbour MT, Porter KD, Gross SK and Hughes RM. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic acroinvertebrates and fish. U.S. Environmental Protection Agency, Office of Water, Washington, D.C. EPA 440-4-89-001.
Peel MC, Finlayson BL, and McMahon TA. 2007. Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633 – 1644.
Pinder LCV. 1986. Biology of freshwater Chironomidae. Annual Review of
Entomology 31: 1 – 23.
Punti T, Rieradevall M, and Prat N. 2009. Environmental factors, spatial variation,
and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society 28: 247 – 265.
Rosa BFJV, Silva MVD, Oliveira VC, Martins RT, and Alves R. 2011.
Macroinvertebrates associated with bryophyte in a first-order Atlantic forest stream. Zoologia 28: 351 – 356.
Ross DH and Wallace JB. 1982. Factors influencing the longitudinal distribution of
larval Hydropsychidae ( Trichoptera) in a southern Applachian stream system (U.S.A.) Hydrobiologia 96: 185 – 199.
Roth NE, Southerland MT, Mercurio G, Chaillou JC, Kazyak PF, Stranko SS, Prochaska AP, Heimbuch DG, and Seibel JC. 1999. State of the streams: 1995-1997 Maryland biological stream survey results. Maryland Department of Natural Resources. Annapolis, MD.
Roy AH, Rosemond AD, Leigh DS, Paul MJ, and Wallace JB. 2003. Habitat-specific
responses of stream insects to land cover disturbance: biological consequences and monitoring implications. Journal of the North American Benthological Society 22: 292 – 307.
Roy AH, Rosemond AD, Paul MJ, Leigh DS, and Wallace JB. 2003. Stream
macroinvertebrate response to catchment urbanization (Georgia, U.S.A.). Freshwater Biology 48: 329 – 346.
Sandin L and Johnson RK. 2004. Local, landscape and regional factors structuring
benthic macroinvertebrate assemblages in Swedish streams. Landscape Ecology 19: 501 – 514.
Sandin L. 2003. Benthic macroinvertebrates in Swedish streams: community
structure, taxon richness, and environmental relations. Ecography 26: 269 – 282.
Shen Q, Liu C, Liao J, Zhang F, and Dorney C. Changing urban growth patterns in a
pro-smart growth state: the case of Maryland, 1973-2002. Paper for the Lincoln Institute for Land Policy, Cambridge, MA
Simberloff D. 1998. Flaghips, umbrellas, and keystones: is single-species
management passe in the landscape era? Biological Conservation 83: 247 – 257.
Sponseller RA, Benfield EF, and Valett HM. 2001. Relationships between land use,
spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409 – 1424.
Statzner B, Doledec S, and Hugueny B. 2004. Biological trait composition of
European stream invertebrate communities: assessing the effects of various trait filter types. Ecology 27: 470 – 488.
Stevenson RJ. 1997. Scale-dependent determinants and consequences of benthic algal
heterogeneity. Journal of the North American Benthological Society 16: 248 – 262.
Stromberg JC, Lite SJ, and Dixon MD. 2010. Effects of stream flow patterns on
riparian vegetation of a semiarid river: implications for a changing climate. River Research and Applications 26: 712 – 729.
Temnerud J and Bishop K. 2005. Spatial variation of streamwater chemistry in two
Swedish boreal catchments: implications for environmental assessment. Environmental Science and Technology 39: 1463 – 1469.
Thompson R and Townsend C. 2006. A truce with neutral theory: local deterministic
factors, species traits and dispersal limitation together determine patterns of diversity in stream invertebrates. Journal of Animal Ecology 75: 476 – 484.
Townsend CR, Doledec S, Norris R, Peacock K, and Arbuckle C. 2003. The influence
of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48: 768 – 785.
Townsend CR and Hildrew AG. 1994. Species traits in relation to habitat templet for
river systems. Freshwater Biology 31: 265 – 275.
Turak E, Flack LK, Norris RH, Simpson J, and Waddell N. 1999. Assessment of river
condition at a large spatial scale using predictive models. Freshwater Biology 41: 283 – 298.
Urban MC, Skelly DK, Burchsted D, Price W, and Lowry S. 2006. Stream
communities across a rural-urban landscape gradient. Diversity and Distributions 12: 337 – 350.
Vannote RL, Minshall GW, Cummins KW, Sedell JR, and Cushing CE. 1980. The
river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130 – 137.
Vinson MR and Hawkins CP. 1998. Biodiversity of stream insects: variation at local,
basin, and regional scales. Annual Review of Entomology 43: 271 – 293.
Wallace JB and Webster JR. 1996. The role of macroinvertebrates in stream
ecosystem function. Annual Reviews Entomology 41: 115 – 139.
Weigel BM. 2003. Development of stream macroinvertebrate models that predict
watershed and local stressors in Wisconsin. Journal of the North American Benthological Society 22: 123 – 142.
Weigel BM, Wang L, Rasmussen PW, Butcher JT, Stewart PM, Simon TP, and Wiley
MJ. 2003. Relative influence of variables at multiple spatial scales on stream macroinvertebrates in the Northern Lakes and Forest ecoregion, U.S.A. Freshwater Biology 48: 1440 – 1461.
Wiley MJ, Kohler SL, and Seelbach PW. 1997. Reconciling landscape and local views
of aquatic communities: lessons from Michigan trout streams. Freshwater Biology 37: 133 – 148.
US Geological Survey. 2005. Elevations and Distances in the United States.
http://egsc.usgs.gov/isb//pubs/booklets/elvadist/elvadist.html
Zar JH. 1972. Significance testing of the spearman rank correlation coefficient.
Journal of the American Statistical Association 67: 578 – 580.
Zweig LD and Rabeni CF. 2001. Biomonitoring for deposited sediment using benthic
invertebrates: a test on 4 Missouri streams. Journal of the North American Benthological Society 20: 643 – 657.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top