( 您好!臺灣時間:2024/06/21 15:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Bo-Chun Wu
論文名稱(外文):Long-term Exposure Risk Assessment for Airborne Silica Dust in Ceramics Manufacturing
外文關鍵詞:Ceramics manufacturingSilicaAirborne dustLungExposureInflammationFibrosisProbabilistic risk assessment
  • 被引用被引用:1
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
陶瓷工廠含高濃度之氣懸二氧化矽粉塵,廠內作業勞工若長期暴露於此環境,將有高風險導致肺部慢性發炎及纖維化,甚至可能罹患肺癌。此外,廠內二氧化矽粉塵濃度會隨製程而異,因此於各製程工作區之暴露風險亦會隨之改變。本研究目的為評估陶瓷工廠各工作區,勞工之氣懸二氧化矽粉塵長期暴露風險,並推估廠內二氧化矽粉塵濃度閾值,以提供勞工長期工作45年期間之肺部健康警訊。本研究以現地環境監測數據為基礎,針對廠內氣懸粉塵之二氧化矽含量及粒徑分佈做定量分析,並利用以生理為基礎之肺泡沉積區塊模式,推估勞工長期暴露之肺部二氧化矽粉塵沉積量。本研究以希爾模式 (Hill model) 描述二氧化矽粉塵對人體肺部發炎反應及纖維化之效應,且以韋伯閾值模式 (Weibull threshold model) 推算環境粉塵濃度閾值。本研究藉由機率風險模式評估勞工長期暴露二氧化矽之健康風險及檢視逐年肺部健康惡化程度。本研究顯示,氣懸粉塵質量中位粒徑以家用瓷製造廠燒窯區5.64 μm為最小。結果指出氣懸粉塵之二氧化矽含量與二氧化矽粉塵濃度,以陶磚製造廠噴霧造粒區33.04%及1246.32 ± 516.98 μg m-3為最高;家用瓷製造廠中則以施釉區2.18%及2.64 ± 2.84 μg m-3為最高。在風險為0.5之條件下,顯示家用瓷製造廠施釉區勞工長期工作45年,其肺部發炎反應及纖維化程度皆為輕度健康惡化,而在陶磚製造廠噴霧造粒區,則是漸從輕度轉為重度健康惡化。本研究所推求之環境粉塵濃度閾值為361.16 μg m-3,可作為廠內環境粉塵濃度之監控參考值。本研究發現勞工長期於陶磚製造廠噴霧造粒區工作之二氧化矽暴露風險為最高,建議業主可每日監控廠內環境粉塵濃度,將濃度降低至閾值之下。本研究亦呼籲年資達15年以上之勞工應開始定期做肺部之健康檢查,以預防罹患二氧化矽粉塵暴露之相關疾病。

Ceramics manufacturing contains high concentration of airborne silica dust. If workers are exposed to such environments over a long period of time, they will have high risk for suffering from chronic inflammation, fibrosis, and lung cancer. In addition, silica dust concentrations vary with different manufacturing processes, resulting in working area-varied exposure risks. The purpose of this study was to assess long-term exposure risks of airborne silica dust in each working area at ceramics manufacturing. A concentration threshold for silica dust was estimated to provide a lung health warning for workers during the prolonged employment of 45 years. Based on in situ environmental monitoring data, this study quantified the silica content in the airborne dust samples and characterized particle size distributions in working areas. A physiologically based alveolar deposition models was used to estimate silica lung burden for long-term exposed workers. This study used Hill model to describe the silica dust effects on human lung inflammation and fibrosis. A Weibull threshold model was used to estimate a concentration threshold for environmental dust. This study used the probabilistic risk model to assess the health risk for workers who are exposed to silica over a long period of time for examining the degree of lung health deterioration annually. This study showed that the smallest mass median diameter was found in burning area at commodity ceramic factory of 5.64 μm. Results indicated that granulation area at tile ceramic factory had the highest silica content of 33.04% and silica dust concentration of 1246.32 ± 516.98 μg m-3, whereas the highest silica content and silica dust concentration in commodity ceramic factory was found in glazing area of 2.18% and 2.64 ± 2.84 μg m-3. Risk assessment results revealed that at risk of 0.5 for glazing workers at commodity ceramic factory during the prolonged employment of 45 years, the degrees of lung inflammation and fibrosis were mild health deterioration, whereas for those who work in granulation area at tile ceramic factory changed gradually from mild to severe. The estimated threshold value for environmental dust concentration was 361.16 μg m-3 that could be used as the monitoring reference value for environmental dust concentration in ceramics manufacturing. This study found that workers in granulation area at tile ceramic factory for a long period appeared the highest silica exposure risk, suggesting that the proprietors may monitor the environmental dust levels on a daily basis for reducing concentrations below the threshold. This study also suggests that workers with more than 15-yr seniority should initiate a periodic lung health examination program to prevent silica dust exposure-related diseases.

中文摘要 I
英文摘要 II
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 IX
壹、 前言 1
貳、 動機與目的 3
2.1. 研究動機 3
2.2. 研究目的 4
參、 文獻回顧 5
3.1. 二氧化矽特性 5
3.2. 二氧化矽粉塵量測 6
3.3. 二氧化矽暴露之健康效應 13
3.4. 數學模式 18
3.4.1. 肺部沉積模式 18
3.4.2. 劑量反應模式 21
3.4.3. 閾值模式 24
3.5. 風險評估與管理 26
肆、 材料與方法 28
4.1. 研究架構 28
4.2. 研究設計 31
4.3. 暴露分析 33
4.3.1. 現地採樣與量測 33
4.3.2. 二氧化矽定量 37
4.3.3. 以生理為基礎之肺泡沉積模式 41
4.4. 效應分析 45
4.5. 環境閾值推估 48
4.6. 風險特性化 49
4.7. 不確定性與資料分析 51
伍、 結果 52
5.1. 粉塵粒徑分佈與二氧化矽含量 52
5.2. 肺泡二氧化矽年沉積總量 60
5.3. 人體肺部危害效應 63
5.4. 環境粉塵濃度閾值 65
5.5. 暴露風險 67
陸、 討論 74
6.1. 二氧化矽粉塵濃度與粒徑分佈 74
6.2. 長期暴露風險與危害 76
6.3. 限制與應用 78
柒、 結論 81
捌、 未來研究建議 82
參考文獻 83
附錄A:家用瓷製造廠各工作區氣懸粉塵標準化質量濃度 99
附錄B:陶磚製造廠各工作區氣懸粉塵標準化質量濃度 104

Agrawal A, Cronin JP, Agrawal A, Tonazzi JC, Adams L, Ashley K, Brisson MJ, Duran B, Whitney G, Burrell AK, McCleskey TM, Robbins J, White KT. 2008. Extraction and optical fluorescence method for the measurement of trace beryllium in soils. Environmental Science and Technology 42: 2066 – 2071.
Alfoldy B, Giechaskiel B, Hofmann W, Drossinos Y. 2009. Size-distribution dependent lung deposition of diesel exhaust particles. Journal of Aerosol Science 40: 652 – 663.
Alharbi OA, Zaki DY, Hamzawy EMA. 2012. Effect of TiO2, LiF and Cr2O3 in the crystallization of cristobalite and tridymite in sintered glass-ceramics. Silicon 4: 281 – 287.
Amabile JC, Leuraud K, Vacquier B, Caer-Lorho S, Acker A, Laurier D. 2009. Multifactorial study of the risk of lung cancer among French uranium miners: radon, smoking and silicosis. Health Physics Society 97: 613 – 621.
Arts JH, Muijser H, Duistermaat E, Junker K, Kuper CF. 2007. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Food and Chemical Toxicology 45: 1856 – 1867.
Ashauer R, Escher BI. 2010. Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment. Journal of Environmental Monitoring 12: 2056 – 2061.
Bartley DL, Vincent JH. 2011. Sampling conventions for estimating ultrafine and fine aerosol particle deposition in the human respiratory tract. The Annals of Occupational Hygiene 55: 696 – 709.
Bhawna S, Ojha UC, Kumar S, Gupta R, Gothi D, Pal RS. 2013. Spectrum of high resolution computed tomography findings in occupational lung disease: experience in a tertiary care institute. Journal of Clinical Imaging Science 3: 64.
Boelsterli UA. 2003. Mechanistic toxicology: the molecular basis of how chemicals disrupt biological targets. Taylor and Francis, New York.
Castranova V, Vallyathan V. 2000. Silicosis and Coal Workers'' Pneumoconiosis. Environmental Health Perspectives 108: 675 – 684.
Castranova V. 2004. Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: role of reactive oxygen/nitrogen species. Free Radical Biology and Medicine 37: 916 – 925.
Chen CH, Tsaia PJ, Lai CY, Peng YL, Soo JC. 2010. Chen CY, Shih TS. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method. Journal of Hazardous Materials 176: 389 – 394.
Chen CJ. 2002. The study of health effect among ceramics manufacturing workers. Institute of Labor, Occupational Safety And Health, Ministry of Labor (R.O.C.) report No. IOSH90-M345. (in Chinese)
Chen CY, Tang DT. 2001. Current crystaline free silica exposure in Taiwan. Institute of Labor, Occupational Safety And Health, Ministry of Labor (R.O.C.) report No. IOSH96-A323. (in Chinese)
Chen GY, Nunez G. 2010. Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology 10: 826 – 837.
Chen W, Liu Y, Wang H, Hnizdo E, Sun Y, Su L, Zhang X, Weng S, Bochmann F, Hearl FJ, Chen J, Wu T. 2012. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: a cohort study. PLoS Medicine 9: e1001206.
Chen YH, Wu TN, Liou SH. 2001. Obstructive pulmonary function defects among Taiwanese firebrick workers in a 2-year follow-up study. Journal of Occupational and Environmental Medicine 43: 969 – 975.
Cherry NM, Burgess GL, Turner S, McDonald JC. 1998. Crystalline silica and risk of lung cancer in the potteries. Occupational and Environmental Medicine 55: 779 – 785.
Chio CP, Chen WY, Chou WC, Hsieh NH, Ling MP, Liao CM. 2012. Assessing the potential risks to zebrafish posed by environmentally relevant copper and silver nanoparticles. Science of the Total Environment 420: 111 – 118.
Chio CP, Liao CM, Tsai YI, Cheng MT, Chou WC. 2014. Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan. Atmospheric Environment 85: 64 – 72.
Chu D, Zabet NR, Mitavskiy B. 2009. Models of transcription factor binding: sensitivity of activation functions to model assumptions. Journal of Theoretical Biology 257: 419 – 429.
Clarke LD, Plevritis SK, Boer R, Cronin KA, Feuer EJ. 2006. A comparative review of CISNET breast models used to analyze U.S. breast cancer incidence and mortality trends. Journal of the National Cancer Institute Monographs 36: 96 – 105.
Cooper MR, Susi P, Rempel D. 2012. Evaluation and control of respirable silica exposure during lateral drilling of concrete. Journal of Occupational and Environmental Hygiene 9: D35 – D41.
Cox LAJr. 2011. An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica. Risk Analysis 31: 1543 – 1560.
Dahmann D, Taeger D, Kappler M, Buchte S, Morfeld P, Bruning T, Pesch B. 2008. Assessment of exposure in epidemiological studies: the example of silica dust. Journal of Exposure Science and Environmental Epidemiology 18: 452 – 461.
Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA. 2007. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annual Review of Pharmacology and Toxicology 47: 357 – 400.
Davis S, Begon M, De Bruyn L, Ageyev VS, Klassovskiy NL, Pole SB, Viljugrein H, Stenseth NC, Leirs H. 2004. Predictive thresholds for plague in Kazakhstan. Science 304: 736 – 738.
Davis S, Leirs H, Viljugrein H, Stenseth NC, De Bruyn L, Klassovskiy N, Ageyev V, Begon M. 2007. Empirical assessment of a threshold model for sylvatic plague. Journal of the Royal Society Interface 4: 649 – 657.
Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. 2004. Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India 52: 794 – 804.
DiPietro LA. 1995. Wound healing: the role of the macrophage and other immune cells. Shock 4: 233 – 240.
Domingo RA, Southard RJ, Lee K. 2010. Laboratory system for dust generation from soils. Journal of Environmental Quality 39: 1254 – 1261.
Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320: 674 – 677.
Ehrlich RI, Myers JE, te Water Naude JM, Thompson ML, Churchyard GJ. 2011. Lung function loss in relation to silica dust exposure in South African gold miners. Occupational and Environmental Medicine 68: 96 – 101.
Elihn K, Berg P, Liden G. 2011. Correlation between airborne particle concentrations in seven industrial plants and estimated respiratory tract deposition by number, mass and elemental composition. Journal of Aerosol Science 42: 127 – 141.
Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B. 2008. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Archives of Toxicology 82: 151 – 157.
Flanagan ME, Seixas N, Majar M, Camp J, Morgan M. 2003. Silica dust exposures during selected construction activities. American Industrial Hygiene Association Journal 64: 319 – 328.
Fritsch P. 2006. Uncertainties in aerosol deposition within the respiratory tract using the icrp 66 model: a study in workers. Health Physics 90: 114 – 126.
Fubini B, Hubbard A. 2003. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radical Biology and Medicine 34: 1507 – 1516.
Gao X, Zhang G, Srivatsan TS. 2006. A probabilistic model for prediction of cleavage fracture in the ductile-to-brittle transition region and the effect of temperature on model parameters. Materials Science and Engineering 415: 264 – 272.
Gefen A. 2010. Mathematical functions and their properties as relevant to the biomechanical modeling of cell and tissue damage. Journal of Applied Biomechanics 26: 93 – 103.
Gesztelyi R, Zsuga J, Kemeny-Beke A, Varga B, Juhasz B, Tosaki A. 2012. The Hill equation and the origin of quantitative pharmacology. Archive for History of Exact Sciences 66: 427 – 438.
Gopal K, Tripathy SS, Bersillon JL, Dubey SP. 2007. Chlorination byproducts, their toxicodynamics and removal from drinking water. Journal of Hazardous Materials 40: 1 – 6.
Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P. 2008. The Hill equation: a review of its capabilities in pharmacological modelling. Fundamental and Clinical Pharmacology 22: 633 – 648.
Greenberg MI, Waksman J, Curtis J. 2007. Silicosis: A Review. Disease a Month 53: 394 – 416.
Harrison J, Chen JQ, Miller W, Chen W, Hnizdo E, Lu J, Chisholm W, Keane M, Gao P, Wallace W. 2005. Risk of silicosis in cohorts of Chinese tin and tungsten miners and pottery workers (II): Workplace-specific silica particle surface composition. American Journal of Industrial Medicine 48: 10 – 15.
Hill AV. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. The Journal of Physiology 4: 4 – 7.
Hinds WC. 1999. Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles. 2nd ed. New York: John Wiley &; Sons Inc.
Hnizdo E, Murray J. 1998. Risk of pulmonary tuberculosis relative to silicosis and exposure to silica dust in South African gold miners. Occupational and Environmental Medicine 55: 496 – 502.
Horwell CJ, Williamson BJ, Donaldson K, Le Blond JS, Damby DE, Bowen L. 2012. The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard. Particle and Fibre Toxicology 9: 44.
Hsieh NH, Liao CM. 2013. Assessing exposure risk for dust storm events-associated lung function decrement in asthmatics and implications for control. Atmospheric Environment 68: 256 – 264.
ICRP. 1994. Human respiratory tract model for radiological protection, a report of a task group of the International Commission on Radiological Protection. ICRP Publication, vol. 66. New York: Elsevier.
Jager T, Albert C, Preuss TG, Ashauer R. 2011. General unified threshold model of survival-a toxicokinetic-toxicodynamic framework for ecotoxicology. Environmental Science and Technology 45: 2529 – 2540.
Johncy SS, Dhanyakumar G, Kanyakumari, Samuel TV. 2014. Chronic exposure to dust and lung function impairment: A study on female sweepers in India. National Journal of Physiology, Pharmacy and Pharmacology 4: 15 – 19.
Jutzi P, Schubert U. 2003. Silicon chemistry: From the atom to extended systems. Wiley-VCH, Weinheim.
Kachuri L, Villeneuve PJ, Parent ME, Johnson KC; Canadian Cancer Registries Epidemiology Group, Harris SA. 2014. Occupational exposure to crystalline silica and the risk of lung cancer in Canadian men. International Journal of Cancer 135: 138 – 148.
Kleinstreuer C, Zhang Z, Li Z. 2008. Modeling airflow and particle transport/deposition in pulmonary airways. Respiratory Physiology and Neurobiology 163: 128 – 138.
Kreuzer M, Straif K, Marsh JW, Dufey F, Grosche B, Nosske D, Sogl M. 2012. Occupational dust and radiation exposure and mortality from stomach cancer among German uranium miners, 1946-2003. Occupational and Environmental Medicine 69: 217 – 223.
Kuempel ED, O''Flaherty EJ, Stayner LT, Smith RJ, Green FH, Vallyathan V. 2001a. A biomathematical model of particle clearance and retention in the lungs of coal miners. I. Model development. Regulatory Toxicology and Pharmacology 34: 69 – 87.
Kuempel ED, Tran CL, Castranova V, Bailer AJ. 2006. Lung dosimetry and risk assessment of nanoparticles: evaluating and extending current models in rats and humans. Inhalation Toxicology 18: 717 – 724.
Kuempel ED, Tran CL, Smith RJ, Bailer AJ. 2001b. A biomathematical model of particle clearance and retention in the lungs of coal miners. II. Evaluation of variability and uncertainty. Regulatory Toxicology and Pharmacology 34: 88 – 101.
Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, Aritake K, Urade Y, Morimoto Y. 2011. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity 34: 514 – 526.
Lakshtanov DL, Sinogeikin SV, Bass JD. 2007. High-temperature phase transitions and elasticity of silica polymorphs. Physics and Chemistry of Minerals 34: 11 – 22.
Le Jeune I, Gribbin J, West J, Smith C, Cullinan P, Hubbard R. 2007. The incidence of cancer in patients with idiopathic pulmonary fibrosis and sarcoidosis in the UK. Respiratory Medicine 101: 2534 – 2540.
Lee JB, Kim KH, Kim HJ, Cho SJ, Jung K, Kim SD. 2011. Emission rate of particulate matter and its removal efficiency by precipitators in under-fired charbroiling restaurants. The Scientific World Journal 11: 1077 – 1088.
Leung CC, Yu ITS, Chen W. 2012. Silicosis. The Lancet 379: 2008 – 2018.
Lin MH, Su YC, Wang JY, Yeh WY. 2003. A study on dust exposure in the ceramics manufacturing environment. Institute of Occupational Safety and Health Journal 11: 237 – 249. (in Chinese)
Liu Y, Steenland K, Rong Y, Hnizdo E, Huang X, Zhang H, Shi T, Sun Y, Wu T, Chen W. 2013. Exposure-response analysis and risk assessment for lung cancer in relationship to silica exposure: a 44-year cohort study of 34,018 workers. American Journal of Epidemiology 178: 1424 – 1433.
MacCalman L, Tran CL, Kuempel E. 2009. Development of a bio-mathematical model in rats to describe clearance, retention and translocation of inhaled nano particles throughout the body. Journal of Physics: Conference Series 151: 012028.
Meijer E, Tjoe Nij E, Kraus T, van der Zee JS, van Delden O, van Leeuwen M, Lammers JW, Heederik D. 2011. Pneumoconiosis and emphysema in construction workers: results of HRCT and lung function findings. Occupational and Environmental Medicine 68: 542 – 546.
Meijers JM, Swaen GM, Slangen JJ. 1996. Mortality and lung cancer in ceramic workers in The Netherlands: preliminary results. American Journal of Industrial Medicine 30: 26 – 30.
Miller BG, Hagen S, Love RG, Soutar CA, Cowie HA, Kidd MW, Robertson A. 1998. Risks of silicosis in coalworkers exposed to unusual concentrations of respirable quartz. Occupational and Environmental Medicine 55: 52 – 58.
Miller BG, MacCalman L. 2010. Cause-specific mortality in British coal workers and exposure to respirable dust and quartz. Occupational and Environmental Medicine 67: 270 – 276.
Mohammadyan M, Rokni M, Yosefinejad R. 2013. Occupational exposure to respirable crystalline silica in the Iranian Mazandaran province industry workers. Archives of Industrial Hygiene and Toxicology 64: 139 – 143.
Mohner M, Kersten N, Gellissen J. 2013. Chronic obstructive pulmonary disease and longitudinal changes in pulmonary function due to occupational exposure to respirable quartz. Occupational and Environmental Medicine 70: 9 – 14.
Moreno T, Querol X, Castillo S, Alastuey A, Cuevas E, Herrmann L, Mounkaila M, Elvira J, Gibbons W. 2006. Geochemical variations in aeolian mineral particles from the Sahara-Sahel Dust Corridor. Chemosphere 65: 261 – 270.
Morfeld P, Mundt KA, Taeger D, Guldner K, Steinig O, Miller BG. 2014. Threshold value estimation for respirable quartz dust exposure and silicosis incidence among workers in the german porcelain industry. Journal of Occupational and Environmental Medicine 56: 123 – 125.
Mossman BT, Churg A. 1998. Mechanisms in the pathogenesis of asbestosis and silicosis. American Journal of Respiratory and Critical Care Medicine 157: 1666 – 1680.
Mossman BT, Glenn RE. 2013. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Critical Reviews in Toxicology 43: 632 – 660.
Mundt KA, Birk T, Parsons W, Borsch-Galetke E, Siegmund K, Heavner K, Guldner K. 2011. Respirable crystalline silica exposure-response evaluation of silicosis morbidity and lung cancer mortality in the German porcelain industry cohort. Journal of Occupational and Environmental Medicine 53: 282 – 289.
Mwaiselage J, Bratveit M, Moen B, Mashalla Y. 2004. Cement dust exposure and ventilatory function impairment: an exposure-response study. Journal of Occupational and Environmental Medicine 46: 658 – 667.
Nabeshi H, Yoshikawa T, Matsuyama K, Nakazato Y, Arimori A, Isobe M, Tochigi S, Kondoh S, Hirai T, Akase T, Yamashita T, Yamashita K, Yoshida T, Nagano K, Abe Y, Yoshioka Y, Kamada H, Imazawa T, Itoh N, Tsunoda S, Tsutsumi Y. 2010. Size-dependent cytotoxic effects of amorphous silica nanoparticles on Langerhans cells. Die Pharmazie 65: 199 – 201.
Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. 2010. The nanosilica hazard: another variable entity. Particle and Fibre Toxicology 7: 39.
National Institute for Occupational Safety and Health. 1994. Silica, Crystalline, by IR. Method 7602, Issue 2 (15/08/94), NIOSH Manual of Analytical Methods, DHHS (NIOSH), Cincinnati, OH.
National Institute for Occupational Safety and Health. 2003. Silica, Crystalline, by XRD. Method 7500, Issue 4 (15/03/03), NIOSH Manual of Analytical Methods, DHHS (NIOSH), Cincinnati, OH.
Nku CO, Peters EJ, Eshiet AI, Oku O, Osim EE. 2005. Lung function, oxygen saturation and symptoms among street sweepers in calabar-Nigeria. Nigerian journal of physiological sciences 20: 79 – 84.
Oberdorster G, Oberdorster E, Oberdorster J. 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 113: 823 – 839.
Olofsson U. 2011. A study of airborne wear particles generated from the train traffic—Block braking simulation in a pin-on-disc machine. Wear 271: 86 – 91.
O''Neill LA. 2008. Immunology. How frustration leads to inflammation. Science 320: 619 – 620.
Pery AR, Brochot C, Zeman FA, Mombelli E, Desmots S, Pavan M, Fioravanzo E, Zaldivar JM. 2013. Prediction of dose-hepatotoxic response in humans based on toxicokinetic/toxicodynamic modeling with or without in vivo data: a case study with acetaminophen. Toxicology Letters 220: 26 – 34.
Porter DW, Hubbs AF, Mercer R, Robinson VA, Ramsey D, McLaurin J, Khan A, Battelli L, Brumbaugh K, Teass A, Castranova V. 2004. Progression of lung inflammation and damage in rats after cessation of silica inhalation. Toxicological Sciences 79: 370 – 380.
Porter DW, Millecchia LL, Willard P, Robinson VA, Ramsey D, McLaurin J, Khan A, Brumbaugh K, Beighley CM, Teass A, Castranova V. 2006. Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation. Toxicological Sciences 90: 188 – 197.
Porter DW, Ramsey D, Hubbs AF, Battelli L, Ma J, Barger M, Landsittel D, Robinson VA, McLaurin J, Khan A, Jones W, Teass A, Castranova V. 2001. Time course of pulmonary response of rats to inhalation of crystalline silica: histological results and biochemical indices of damage, lipidosis, and fibrosis. Journal of Environmental Pathology, Toxicology and Oncology 20: 1 – 14.
Porter DW, Ye J, Ma J, Barger M, Robinson VA, Ramsey D, McLaurin J, Khan A, Landsittel D, Teass A, Castranova V. 2002. Time course of pulmonary response of rats to inhalation of crystalline silica: NF-kappa B activation, inflammation, cytokine production, and damage. Inhalation Toxicology 14: 349 – 367.
Premasekharan G, Nguyen K, Contreras J, Ramon V, Leppert VJ, Forman HJ. 2011. Iron-mediated lipid peroxidation and lipid raft disruption in low-dose silica-induced macrophage cytokine production. Free Radical Biology and Medicine 51: 1184 – 1194.
Rabolli V, Thomassen LC, Princen C, Napierska D, Gonzalez L, Kirsch-Volders M, Hoet PH, Huaux F, Kirschhock CE, Martens JA, Lison D. 2010. Influence of size, surface area and microporosity on the in vitro cytotoxic activity of amorphous silica nanoparticles in different cell types. Nanotoxicology 4: 307 – 318.
Raines EW, Dower SK, Ross R. 1989. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 243: 393 – 396.
Rappaport SM, Goldberg M, Susi P, Herrick RF. 2003. Excessive exposure to silica in the US construction industry. The Annals of Occupational Hygiene 47: 111 – 122.
Ross R. 1999. Atherosclerosis — an inflammatory disease. The New England Journal of Medicine 340: 115 – 126.
Ruzer LS, Harley NH. 2005. Aerosols Handbook: Measurement, Dosimetry, and Health Effects. CRC press, Florida, USA.
Sampah ME, Shen L, Jilek BL, Siliciano RF. 2011. Dose-response curve slope is a missing dimension in the analysis of HIV-1 drug resistance. Proceedings of the National Academy of Sciences of the United States of America 108: 7613 – 7618.
Sauni R, Oksa P, Lehtimaki L, Toivio P, Palmroos P, Nieminen R, Moilanen E, Uitti J. 2012. Increased alveolar nitric oxide and systemic inflammation markers in silica-exposed workers. Occupational and Environmental Medicine 69: 256 – 260.
Scarselli A, Binazzi A, Forastiere F, Cavariani F, Marinaccio A. 2011. Industry and job-specific mortality after occupational exposure to silica dust. Occupational Medicine 61: 422 – 429.
Schulte PA, Geraci CL, Murashov V, Kuempel ED, Zumwalde RD, Castranova V, Hoover MD, Hodson L, Martinez KF. 2014. Occupational safety and health criteria for responsible development of nanotechnology. Journal of Nanoparticle Research 16: 2153.
Schulte PA, Murashov V, Zumwalde R, Kuempel ED, Geraci CL. 2010. Occupational exposure limits for nanomaterials: state of the art. Journal of Nanoparticle Research 12: 1971 – 1987.
Sellamuthu R, Umbright C, Roberts JR, Cumpston A, McKinney W, Chen BT, Frazer D, Li S, Kashon M, Joseph P. 2013. Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats. Journal of Applied Toxicology 33: 301 – 312.
Shadab M, Agrawal DK, Ahmad Z, Aslam M. 2013. A cross sectional study of Pulmonary Function Tests in street cleaners in Aligarh, India. Biomedical Research 24: 449 – 452.
Shi H, Magaye R, Castranova V, Zhao J. 2013. Titanium dioxide nanoparticles: a review of current toxicological data. Particle and Fibre Toxicology 10: 15.
Stolt P, Yahya A, Bengtsson C, Kallberg H, Ronnelid J, Lundberg I, Klareskog L, Alfredsson L; EIRA Study Group. 2010. Silica exposure among male current smokers is associated with a high risk of developing ACPA-positive rheumatoid arthritis. Annals of the Rheumatic Diseases 69: 1072 – 1076.
Tan SY, van Oortmarssen GJ, de Koning HJ, Boer R, Habbema JD. 2006. The MISCAN-Fadia continuous tumor growth model for breast cancer. Journal of the National Cancer Institute 56 – 65.
Thakur SA, Beamer CA, Migliaccio CT, Holian A. 2009. Critical role of MARCO in crystalline silica-induced pulmonary inflammation. Toxicological Sciences 108: 462 – 471.
Tjoe Nij E, Hilhorst S, Spee T, Spierings J, Steffens F, Lumens M, Heederik D. 2003. Dust control measures in the construction industry. The Annals of Occupational Hygiene 47: 211 – 218.
Tran CL, Graham MK, Buchanan D. 2001. A biomathematical model for rodent and human lung describing exposure, dose, and response to inhaled silica. Institute of Occupational Medicine (UK) research report TM/01/04.
Tran CL, Kuempel ED, Castranova V. 2002. A Rat Lung Model of Exposure, Dose and Response to Inhaled Silica. Annals of Occupational Hygiene 46: 14 – 17.
Tse LA, Yu IS, Au JS, Qiu H, Wang XR. 2011. Silica dust, diesel exhaust, and painting work are the significant occupational risk factors for lung cancer in nonsmoking Chinese men. British Journal of Cancer 104: 208 – 213.
USEPA. 1989. Guidance manual for assessing human health risks from chemically contaminated, fish and shellfish. US Environmental Protection Agency, Washington, DC.
USEPA. 2004. General risk management program guidance. US Environmental Protection Agency, Washington, DC.
Vasconcelos N, Lippman A. 2000. Statistical models of video structure for content analysis and characterization. IEEE Transactions on Image Processing 9: 3 – 19.
Verma DK, Ritchie AC, Muir DC. 2008. Dust content of lungs and its relationships to pathology, radiology and occupational exposure in Ontario hardrock miners. American Journal of Industrial Medicine 51: 524 – 531.
Vupputuri S, Parks CG, Nylander-French LA, Owen-Smith A, Hogan SL, Sandler DP. 2012. Occupational silica exposure and chronic kidney disease. Renal Failure 34: 40 – 46.
Warheit DB. 2001. Inhaled amorphous silica particulates: what do we know about their toxicological profiles? Journal of Environmental Pathology, Toxicology and Oncology 20: 133 – 141.
Weibull W. 1951. A statistical distribution function of wide applicability. Journal of applied mechanics 18: 293 – 297.
Yang W, Peters JI, Williams RO 3rd. 2008. Inhaled nanoparticles--a current review. International Journal of Pharmaceutics 356: 239 – 247.
Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, Ahmad Z, Ren G. 2010. A review of nanoparticle functionality and toxicity on the central nervous system. Journal of the Royal Society Interface 4: S411 – S422.
Yassin A, Yebesi F, Tingle R. 2005. Occupational exposure to crystalline silica dust in the United States, 1988-2003. Environmental Health Perspectives 113: 255 – 260.
Ye Y, Liu J, Chen M, Sun L, Lan M. 2010. In vitro toxicity of silica nanoparticles in myocardial cells. Environmental Toxicology and Pharmacology 29: 131 – 137.
Zakaria MF, Abu Kassim Z, Ooi MPL, Demidenko S. 2006. Reducing burn-in time through high-voltage stress test and weibull statistical analysis. IEEE Design and Test of Computers 23: 88 – 98.
Zare Naghadehi M, Sereshki F, Mohammadi F. 2014. Pathological study of the prevalence of silicosis among coal miners in Iran: A case history. Atmospheric Environment 83: 1 – 5.

第一頁 上一頁 下一頁 最後一頁 top