(3.232.129.123) 您好!臺灣時間:2021/03/06 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張嫤雪
研究生(外文):Chin-Hsiue Chang
論文名稱:利用部分均衡和一般均衡模型來整合環境與健康影響評估與經濟成本效益分析—台灣生質能源發展和傳染病防治策略之應用
論文名稱(外文):Integration of Environmental and Health Impact into Economic Cost and Benefit Analysis Using Partial and General Equilibrium Models – Applications to Bioenergy Development and Infectious Disease Prevention Policies in Taiwan
指導教授:張靜貞張靜貞引用關係
口試委員:翁永和林國榮陳吉仲林幸君
口試日期:2014-05-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業經濟學研究所
學門:農業科學學門
學類:農業經濟及推廣學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:100
中文關鍵詞:桐樹生質能源經濟可行性評估投入產出模型新型流感流感經濟影響評估可計算一般均衡模型成本效益分析
外文關鍵詞:Tung Tree (Vernicia fordii)BiofuelsEconomic FeasibilityInput-Output ModelH1N1PandemicEconomic Impact AssessmentTaiwan Computable General Equilibrium ModelCost-Benefit Analyses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文應用部分均衡模型(投入產出模型)與一般均衡模型(台灣可計算一般均衡模型),分別將環境和健康因子對台灣能源發展與流行病防疫之影響納入經濟成本效益分析中,俾作為政府未來施政之分析基礎。

本論文透過兩個案例研究來說明不同模型的應用方式與差異所在。首先,針對環境因素納入成本效益的部分,藉由對森林資源之碳吸存功能的有效管理,以油桐籽作為生質柴油料源可有效減緩燃料價格上漲和溫室氣體排放問題,如再納入休耕轉作補貼與平地造林補貼作為配套措施之考量,將對總體與個體經濟產生正面效益。爰此,本案例利用部分均衡模型(投入產出模型)反映所有部門生產和分配使用全貌之特性,模擬桐油生質柴油產業帶動國內直接與間接經濟影響,並結合成本效益分析,評估以油桐籽作為能源作物料源的經濟可行性。分析結果顯示,首先,各料源(國產桐籽、進口桐籽、進口桐油)與進口生質柴油之成本比較,進口桐籽作為料源具成本競爭力,為最適方案。其次,於化石燃料混摻2%生質柴油,如加上休耕農地新植油桐樹之配套所帶來的正面碳吸存效益,國產桐籽與進口桐籽兩者方案淨效益皆為0.13億元。然而,當生質能源推廣目標提升為混摻5%生質柴油時,國產桐籽為料源之方案經濟效益增加為1.96億元,可提升我國再生能源供給之自主性,並大幅提高農業的綠色產值。

第二個案例針對流行病說明如何把健康因子納入經濟影響評估過程中。由於2009年爆發的新型流感(H1N1)新型流感屬於高感染率之疾病,短時間迅速蔓延全球各地,雖然目前之病毒仍屬弱毒性,仍發生重症與死亡案例,對於勞動生產力與民間消費產生衝擊。因此,評估時必須同時考慮疫情持續時間長短、感染範圍大小、及嚴重程度三個因子。爰此,本研究以台灣可計算一般均衡模型及2004年的投入產出表,分別模擬H1N1對我國總體經濟與各產業部門可能所造成的影響,並評估實施三項防疫策略(接種疫苗、學校關閉、施打抗病毒藥物)之成本效益,做為施政優先順序之選擇依據。模擬結果表示,H1N1爆發致使基礎情境之GDP和就業需求減少1.41%和1.72%;採取防疫措施將使GDP和勞動力負面衝擊程度分別減緩為-0.55%~-1.13%及-0.70%~-1.41%。至於接種疫苗政策之經濟淨效益估計可達974億元,為閉校政策與施打抗病毒藥物政策效益之2~3倍之多,故疫苗政策為最適策略。


This thesis applied a partial equilibrium model and a general equilibrium model to conduct two cost-benefit analyses (CBA), one for the bioenergy policy and the other for the public health policy in Taiwan, respectively. The results can serve as empirical references for government policy decision making.

In the first CBA study, the seeds of Tung trees (Vernicia fordii) is used as raw material for biodiesel to alleviate fuel price increases while reducing greenhouse gas emissions simultaneously. The positive benefit of macroeconomics and microeconomics was generated by taking into account government subsidies on forestation in fallow cropland as supporting measures. The Input-output model reflects the flow of overall production, distribution, and usage across different sectors of the economy. Consequently, this case study simulated the direct and indirect influences on the domestic economy driven by Tung biodiesel industry. Furthermore, employed cost-benefit analysis to assess the economic feasibility of using domestically produced and imported Tung seeds as energy crops. The results indicated that: firstly, when considering costs of raw materials, the importation of Tung seeds for use as energy crops is cost-competitive, and is the most suitable program. Secondly, the environmental benefits were considered under the B2 policy (blend of 2% biodiesel and 98% diesel fuel) and the positive carbon sequestration brought by the programs of planting new Tung trees on fallow crop land. The net benefits of the domestically-produced Tung and the imported Tung seed scenarios were equivalent ($13 million). However, when bioenergy goals were expanded to B5 policy (blend of 5% biodiesel and 95% diesel fuel), the economic benefits of using domestically-produced Tung seeds as fuel sources increased to $196 million. Subsequently, the autonomy of renewable energy supply and the green output of agriculture will be enhanced.

The second CBA described how to incorporate the health factors into the economic impact assessment. The highly contagious strain of H1N1 has been spread rapidly around the world. H1N1 with weak toxicity causes illness and deaths which damaged the labor productivity and private consumption. Consequently, durations (six months) and epidemiology are major factors of the simulations. The Taiwan computable general equilibrium model (TAIGEM) was used to estimate the overall and sectoral economic impact of the pandemic with a database compiled from the 2004 Input-Output Table. This study also evaluates the cost-benefit of implementing the three interventions (Vaccination, school closure and antiviral drug), respectively. The simulation results indicate that if the pandemic is confined within the 50% attack rate and 1.3% fatality rate, then the impact on real GDP and labor demand is around -1.41% and -1.72%. Once the attack and fatality rate declines to 26% and 0.6% by introducing interventions, the real GDP and labor demand would contract by -0.55~-1.13% and -0.70~-1.41%. In the cost-benefit analysis, the net benefit of vaccination is 2~3 times greater than the other policies, being the most efficient policy.


謝辭...........................................................I
中文摘要...................................................II
ABSTRACT..............................................III
CONTENTS..............................................V
FIGURES.................................................VI
TABLES..................................................VII
CHAPTER 1 INTRODUCTION.................................1
CHAPTER 2 ASSESSING THE EFFECTS OF ENVIRONMENTAL AND HEALTH POLICY - PARTIAL AND GENERAL EQUILIBRIUM WITH COST-BENEFIT ANALYSIS.................................3
2.1 INPUT-OUTPUT MODEL.................................5
2.2 GENERAL EQUILIBRIUM MODEL.............................6
2.3 COST-BENEFIT MODEL.................................8
2.4 SUMMARY.................................12
CHAPTER 3 INTEGRATED ASSESSMENTS OF TUNG SEEDS FOR BIOFUELS ANALYZED BY THE INPUT-OUTPUT MODEL.................................14
3.1 INTRODUCTION.................................14
3.2 INPUT-OUTPUT MODEL AND DATA.................................18
3.3 COST-BENEFIT ANALYSIS AND DATA.................................24
3.4 SCENARIOS.................................29
3.5 RESULTS.................................31
3.6 SUMMARY.................................36
CHAPTER 4 INTERDISCIPLINARY SIMULATION AND ASSESSMENT OF THE TAIWAN COMPUTABLE GENERAL EQUILIBRIUM MODEL APPLIED TO THE H1N1 EPIDEMIOLOGY.................................38
4.1 INTRODUCTION.................................38
4.2 TAIGEM AND DATA.................................41
4.3 SCENARIOS.................................48
4.4 RESULTS.................................58
4.5 SUMMARY.................................64
CHAPTER 5 CONCLUSION.........................67
FIGURES .................................... 68
TABLES...................................... 73
REFERENCES ................................. 86



1.Agriculture and Food Agency. (2009). Survey system of agriculture product production costs. Taipei, Taiwan: Council of Agriculture, Executive Yuan.

2.Agriculture and Food Agency. (2010). Paddy land utilization adjustment. from http://www.afa.gov.tw/Policy_Index.asp?CatID=16

3.Ali, S. T., Kadi, A. S., &; Ferguson, N. M. (2013). Transmission dynamics of the 2009 influenza A (H1N1) pandemic in India: the impact of holiday-related school closure. Epidemics, 5(4), 157-163. doi: 10.1016/j.epidem.2013.08.001

4.Araz, O. M., Damien, P., Paltiel, D. A., Burke, S., van de Geijn, B., Galvani, A., &; Meyers, L. A. (2012). Simulating school closure policies for cost effective pandemic decision making. Bmc Public Health, 12. doi: Artn 449, Doi 10.1186/1471-2458-12-449

5.Brouwers, L., Cakici, B., Camitz, M., Tegnell, A., &; Boman, M. (2009). Economic consequences to society of pandemic H1N1 influenza 2009-preliminary results for Sweden. Eurosurveillance, 14(37), 5-11.

6.Bureau of Energy. (2010). Taiwan energy statistics. Taipei, Taiwan: Ministry of Economic Affairs.

7.Burns, A., van der Mensbrugghe, D., &; Hans, T. (2008). Evaluating the economic consequences of avian influenza (pp. 1-6). Washington D.C., United States: World Bank.

8.Capoor, K., &; Ambrosi, P. (2009). State and trends of the carbon market 2009. Washington, D.C., United States: The World Bank

9.Centers for Disease Control. (2009a). Daily summary of influenza surveillance (11/29/2009). From
i.http://www.cdc.gov.tw/list.aspx?&;treeid=1F07E8862BA550CF&;nowtreeid=7E6069F4C03717C1&;page=6&;

10.Centers for Disease Control. (2009b). Central epidemic command center announces purchasing progress of tamiflu and pandemic influenza A (H1N1) vaccine. from http://www.cdc.gov.tw/info.aspx?treeid=bc2d4e89b154059b&;nowtreeid=ee0a2987cfba3222&;tid=6B4D15E07642A259

11.Centers for Disease Control. (2009c). Bid for 5 million doses of influenza A (H1N1) vaccine closed. From
http://www.cdc.gov.tw/info.aspx?treeid=bc2d4e89b154059b&;nowtreeid=ee0a2987cfba3222&;tid=3BDB2EEF85696A80

12.Centers for Disease Control and Prevention. (2009). Key facts about Influenza (Flu) &; Flu Vaccine. from http://www.cdc.gov/Flu/keyfacts.htm

13.Chang, C. H., Lin, H. C., Chang, C. C., &; Hsu, S. H. (2010). The Economic Impact of H1N1 Pandemic in Taiwan-A Computable General Equilibrium Analysis. Paper presented at the The Thirteenth Annual Conference on Global Economic Analysis, Center for Global Trade Analysis, Penang, Malaysia.

14.Chang, C. H., Lin, H. C., Chang, C. H., Chang, C. C., &; Hsu, S. H. (2013). Potential of Domestically Produced and Imported Tung (Vernicia Fordii) Seeds for Biofuels. Journal of Biobased Materials and Bioenergy, 7(4), 512-515.

15.Chang, C. H., Lin, H. C., &; Hsu, S. H. (2012). Potential of Domestically Produced and Imported Tung (Vernicia Fordii) Seeds for Biofuels. Taiwanese Agricultural Economic Review, 18(1), 111-136.

16.Chang, F. Y., &; Lin, C. Y. (2008). Perception of biodiesel development in Taiwan. Energy Monthly, 5-7.

17.Chung, K. H. (2010). Transesterification of Camellia Japonica and Vernicia fordii Seed Oils on Akali Catalysts for Biodiesel Production. Journal of industrial and engineering chemistry, 16(4), 505-509.

18.Codsi, G., &; Pearson, K. (1988). GEMPACK: General purpose software for applied general equilibrium and other economic modellers. Computer Science in Economics and Management, 1, 189-207.

19.Council of Labor Affairs. (2009). Yearbook of manpower survey statistics. Taipei, Taiwan: Council of Labor Affairs, Executive Yuan.

20.Customs Administration. (2003). Monthly statistics of exports and imports Taiwan area, the Republic of China. Taipei, Taiwan: Ministry of Finance, Executive Yuan.

21.Dillon, H. S., Laan, T., &; Dillon, H. S. (2008). Biofuels - at what cost? Government support for ethanol biodiesel in Indonesia. Manitoba, Canada: International Institute for Sustainable Development.

22.Directorate-General of Budget &; Accounting and Statistics (DGBAS). (2009a). 166 sectors Input-Output Tables (2006). Taipei, Taiwan: Directorate-General of Budget, Accounting, and Statistics, Executive Yuan.

23.Directorate-General of Budget &; Accounting and Statistics (DGBAS). (2009b). 2009~2012 Central government special budget proposal of typhoon morakot post-disaster recovery - statements and summary of annual expenditures. Taipei, Taiwan: Executive Yuan.

24.Dixon, P. B., Lee, B., Muehlenbeck, T., Rimmer, M. T., Rose, A., &; Verikios, G. (2010). Effects on the U.S. of an H1N1 epidemic: analysis with a quarterly CGE model. Journal of Homeland Security and Emergency Management, 7(1), 1-17.

25.Dixon, P. B., Parmenter, B. R., Sutton, J., &; Vincent, D. P. (1982). ORANI: A multisectoral model of the Australian economy. North-Holland, Netherlands: Amsterdam.

26.Dixon, P. B., &; Rimmer, M. T. (2002). Dynamic, general equilibrium modelling for forecasting and policy : a practical guide and documentation of monash. North-Holland, Netherlands: Amsterdam.

27.Douglas, J., Szeto, K., &; Buckle, B. (2006). Impacts of a potential influenza pandemic on New Zealand’s macroeconomy. Wellington, New Zealand: New Zealand Treasury.

28.Dyer, J. M., Chapital, D. C., Kuan, J. C. W., Shepherd, H. S., Tang, F. Q., &; Pepperman, A. B. (2004). Production of linolenic acid in yeast cells expressing an omega-3 desaturase from Tung (Aleurites fordii). Journal of the American Oil Chemists Society, 81(7), 647-651. doi: DOI 10.1007/s11746-004-956-x

29.Egbendewe-Mondzozo, A., Elbakidze, L., McCarl, B. A., Ward, M. P., &; Carey, J. B. (2013). Partial equilibrium analysis of vaccination as an avian influenza control tool in the U.S. poultry sector. Agricultural Economics, 44(1), 111-123. doi: DOI 10.1111/j.1574-0862.2012.00634.x

30.Fan, E. X. (2003). SARS: economic impacts and implication. Manila, Philippines: Asian Development Bank.

31.Forestry Bureau. (2009). Statistical yearbook of forestry. Taipei, Taiwan: Council of Agriculture, Executive Yuan.

32.Forestry Bureau. (2010). Green afforestation program. from http://www.forest.gov.tw/ct.asp?xItem=50727&;ctNode=6487&;mp=361

33.Fuka&;#728;c, K., &; Lees, K. (2009). Swine flu-what are the impacts on the New Zealand economy — a macro-modeling approach. Wellington, New Zealand: Reserve Bank of New Zealand.

34.Garske, T., Legrand, J., Donnelly, C. A., Ward, H., Cauchemez, S., Fraser, C., . . . Ghani, A. C. (2009). Assessing the severity of the novel influenza A/H1N1 pandemic. British Medical Journal, 339. doi: Artn B2840, Doi 10.1136/Bmj.B2840

35.Gojovic, M. Z., Sander, B., Fisman, D., Krahn, M. D., &; Bauch, C. T. (2009). Modelling mitigation strategies for pandemic (H1N1) 2009. CMAJ, 181(10), 673-680. doi: 10.1503/cmaj.091641

36.Haghdoost, A. A., Gooya, M. M., &; Baneshi, M. R. (2009). Modelling of H1N1 Flu in Iran. Archives of Iranian Medicine, 12(6), 533-541.

37.ICIS. (2010). ICIS pricing March 2010-Biodiesel (Europe). Retrieved 10, 12, 2010, from http://www.icispricing.com/il_shared/Samples/SubPage10100125.asp

38.Johansen, L. (1960). A multi-sectoral study of economic growth. North-Holland, Netherlands: Amsterdam.

39.Kelso, J. K., Halder, N., &; Milne, G. J. (2013). Vaccination strategies for future influenza pandemics: a severity-based cost effectiveness analysis. BMC Infect Dis, 13, 81. doi: 10.1186/1471-2334-13-81

40.Keogh-Brown, M. R., Smith, R. D., Edmunds, J. W., &; Beutels, P. (2010). The macroeconomic impact of pandemic influenza: estimates from models of the United Kingdom, France, Belgium and The Netherlands. The European Journal of Health Economics, 11(6), 543-554. doi: 10.1007/s10198-009-0210-1

41.Keogh-Brown, M. R., Wren-Lewis, S., Edmunds, W. J., Beutels, P., &; Smith, R. D. (2010). The possible macroeconomic impact on the UK of an influenza pandemic. Health Econ, 19(11), 1345-1360. doi: 10.1002/hec.1554

42.Kuli&;#353;i&;#263;, B., Loizou, E., Rozakis, S., &; Segon, V. (2007). Impacts of biodiesel production on Croatian economy. Energy Policy, 35(12), 6036-6045. doi: DOI 10.1016/j.enpol.2007.08.025

43.Kumar, A., &; Sharma, S. (2011). Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renewable &; Sustainable Energy Reviews, 15(4), 1791-1800. doi: DOI 10.1016/j.rser.2010.11.020

44.Lee, B. Y., Brown, S. T., Cooley, P., Potter, M. A., Wheaton, W. D., Voorhees, R. E., . . . Burke, D. S. (2010). Simulating school closure strategies to mitigate an influenza epidemic. Journal of Public Health Management and Practice, 16(3), 252-261. doi: 10.1097/PHH.0b013e3181ce594e

45.Lee, S. M., &; Han, H. S. (2008). Benefit-cost analysis of biodiesel production in Korea. Journal of Rural Development, 31, 49-65.

46.Li, L. H., Lv, P. M., Luo, W., Wang, Z. M., &; Yuan, Z. H. (2010). Esterification of high FFA Tung oil with solid acid catalyst in fixed bed. Biomass and Bioenergy, 34(4), 496-499. doi: DOI 10.1016/j.biombioe.2009.12.014

47.Li, X. Q., &; Xu, Y. m. (2006). Discussion on development of major oleiferous tree species in China and their energy forest construction. Biomass Chemical Energeering, Season 1, 229–234.

48.Lin, C. C., &; Lee, K. C. (2005). The function of artificial forests absorb and store carbon dioxide in the atmosphere. 88. http://www.fengtay.org.tw/paper.asp?page=2005&;num=277&;num2=67

49.Lin, H. C., Hsu, S. H., &; Tso, C. (2006). Agricultural and economic impact of the Input-Output Analysis on domestic development of energy crops. Paper presented at the Paper presented at the 2006 Joint Annual Conference of Taiwan Economic Association and Chinese Economic Association of North America, Taipei, Taiwan.

50.Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A., &; Goodwin, J. G. (2005). Synthesis ef biodiesel via acid catalysis. Industrial and Engineering Chemistry Research, 44, 5353–5363.

51.Ma, F. C., &; Yu, H. M. (2007). Using tree seed oils to produce biodiesel. Newsletter of Forest Research, 14, 22-25.

52.Manh, D. V., Chen, Y. H., Chang, C. C., Chang, M. C., &; Chang, C. Y. (2011). Biodiesel production from Tung oil and blended oil via ultrasonic transesterification process. Journal of the Taiwan Institute of Chemical Engineers, 42(4), 640-644. doi: DOI 10.1016/j.jtice.2010.11.010

53.McKibbin, W. J., &; Sidorenko, A. A. (2006). 2006 Global macroeconomic consequences of pandemic influenza. Sydney, Australia: Lowy Institute for International Policy.

54.Miller, R. E., &; Blair, P. D. (2009). Input – output analysis: foundations and extensions (2 ed.). New York: Cambridge University Press.

55.Ministry of Economic Affairs. (2006). The Republic of China monthly statistics of finance-"Business Units and Sales-by Industrial Classification on Taxation". Taipei, Taiwan: Ministry of Economic Affairs.

56.Ministry of Finance. (2006). Monthly statistics of finance, Taiwan area, the Republic of China. Taipie, Taiwan: Ministry of Finance, Executive Yuan.

57.Mitchell, D. (2008). A note on rising food prices (pp. 21): The World Bank.

58.Muennig, P. (2002). Designing and conducting cost-effectiveness analysis in medicine and health care. San Francisco, CA: Jossey-Bass.

59.National Biodiesel Board. (2010). Biodiesel FAQ''s–Can Biodiesel Help Mitigate“Global Warming”? , from http://www.biodiesel.org/using-biodiesel/market-segments/transit

60.Navas, E., Salleras, L., Dominguez, A., Ibanez, D., Prat, A., Sentis, J., &; Garrido, P. (2007). Cost-effectiveness analysis of inactivated virosomal subunit influenza vaccination in children aged 3-14 years from the provider and societal perspectives. Vaccine, 25(16), 3233-3239

61.Newall, A. T., Wood, J. G., Oudin, N., &; MacIntyre, C. R. (2010). Cost-effectiveness of Pharmaceutical-based Pandemic Influenza Mitigation Strategies. Emerging Infectious Diseases, 16(2), 224-230. doi: DOI 10.3201/eid1602.090571

62.Oxford Economics. (2009). Economic Outlook: Will swine flu push the world into deflation? http://www.oef.com/Free/pdfs/ukmswineflu%28jul09%29.pdf

63.Park, J. Y., Kim, D. K., Wang, Z. M., Lu, P. M., Park, S. C., &; Lee, J. S. (2008). Production and characterization of biodiesel from Tung oil. Applied Biochemistry and Biotechnology, 148(1-3), 109-117. doi: DOI 10.1007/s12010-007-8082-2

64.Parmenter, B. R. (1995). Forecasting and Policy Analysis with the MONASH Model. Paper presented at the International Symposium on Economic Modeling, Bologna, Italy.

65.Patel, A., &; Gorman, S. E. (2009). Stockpiling Antiviral Drugs for the Next Influenza Pandemic. Clinical Pharmacology and Therapeutics, 86(3), 241-243. doi: DOI 10.1038/clpt.2009.142

66.Phillips, L. D., Fasolo, B., Zafiropoulous, N., Eichler, H. G., Ehmann, F., Jekerle, V., . . . Lonngren, T. (2013). Modelling the risk-benefit impact of H1N1 influenza vaccines. Eur J Public Health, 23(4), 674-678. doi: 10.1093/eurpub/ckt006

67.Ramadhas, A. S., Jayaraj, S., &; Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84(4), 335-340. doi: DOI 10.1016/j.fuel.2004.09.016

68.Rashid, U., Anwar, F., Moser, B. R., &; Knothe, G. (2008). Moringa oleifera oil: A possible source of biodiesel. Bioresource Technology, 99(17), 8175-8179. doi: DOI 10.1016/j.biortech.2008.03.066

69.REN21. (2009). Renewables Global Status Report (2009 update). Paris, France: Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH.

70.Rozakis, S., &; Sourie, J. C. (2005). Micro-Economic Modelling of Bio-Fuel Chain System in France to Determine Tax Exemption Policy Under Uncertainty. Energy Policy, 33, 171-182.

71.Sadique, M. Z., Adams, E. J., &; Edmunds, W. J. (2008). Estimating the costs of school closure for mitigating an influenza pandemic. Bmc Public Health, 8. doi: Artn 135, Doi 10.1186/1471-2458-8-135

72.Sander, B., Nizam, A., Garrison, L. P., Postma, M. J., Halloran, M. E., &; Longini, I. M. (2009). Economic Evaluation of Influenza Pandemic Mitigation Strategies in the United States Using a Stochastic Microsimulation Transmission Model. Value in Health, 12(2), 226-233. doi: DOI 10.1111/j.1524-4733.2008.00437.x

73.Scarf, H. E. (1967). On the Computation of Equilibrium Prices. Connecticut, United States: Cowles Foundation, Yale University.

74.Shang, Q., Jiang, W., Lu, H. F., &; Liang, B. (2010). Properties of Tung oil biodiesel and its blends with 0(#) diesel. Bioresource Technology, 101(2), 826-828. doi: DOI 10.1016/j.biortech.2009.08.047

75.Sharma, Y. C., &; Singh, B. (2010). An ideal feedstock, kusum (Schleichera triguga) for preparation of biodiesel: Optimization of parameters. Fuel, 89(7), 1470-1474. doi: DOI 10.1016/j.fuel.2009.10.013

76.Silitonga, A. S., Atabani, A. E., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., &; Mekhilef, S. (2011). A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews, 15(8), 3733-3756. doi: DOI 10.1016/j.rser.2011.07.011

77.Smith, R. D., &; Keogh-Brown, M. R. (2013). Macroeconomic impact of a mild influenza pandemic and associated policies in Thailand, South Africa and Uganda: a computable general equilibrium analysis. Influenza Other Respir Viruses, 7(6), 1400-1408. doi: 10.1111/irv.12137

78.Smith, R. D., Keogh-Brown, M. R., Barnett, T., &; Tait, J. (2009). The economy-wide impact of pandemic influenza on the UK: a computable general equilibrium modelling experiment. British Medical Journal, 339. doi: Artn B4571 Doi 10.1136/Bmj.B4571

79.Sng, J., Koh, D., &; Koh, G. (2009). Influenza A (H1N1) infections among healthcare workers: a cause for cautious optimism. Occupational and Environmental Medicine, 66(9), 569-570. doi: DOI 10.1136/oem.2009.049353

80.Su, C. L., &; Lee, Y. M. (2009). Development Status and Life Cycle Inventory Analysis of Biofuels in Taiwan. Energy Policy, 37(2), 754-758.

81.Toth, J., Jasmine, R., &; Katie, D. (2009). ANZ Economics Alert-Swine flu pandemic. http://www.anz.com/documents/economics/Swine%20Flu%20Alert30%20Apr%202009.pdf

82.Tso, C. (2006). The Internally Economical Efficiency Analysis for Developing Energy Crops Energy Crops. Taipei, Taiwan: Council of Agriculture, Executive Yuan.

83.Tung Oil Trading Online. (2010). Stocktaking of Tung oil market in 2009. from http://www.Tung-oils.com/

84.Urbanchuk, J. M. (2010). Contribution of the Biofuels Industry to the Economy of Iowa. http://www.ethanol.org/pdf/contentmgmt/2010IowaBiofuelsEconomicImpact.pdf

85.Verikios, G., Mccaw, J. M., McVernon, J., &; Harris, A. H. (2012). H1N1 influenza and the Australian macroeconomy. Journal of the Asia Pacific Economy, 17(1), 22-51. doi: Doi 10.1080/13547860.2012.639999

86.Wang, Q. (2011). Time for commercializing non-food biofuels in China. Renewable and Sustainable Energy Reviews, 15(1), 621–629.

87.World Health Organization. (2009). Weekly epidemiological record-Recommended composition of influenza virus vaccines for use in the 2009-2010 influenza (Vol. 84, pp. 421–436). Geneva, Switzerland: World Health Organization.

88.World Health Organization. (2010). Pandemic (H1N1) 2009 - update 112. from http://www.who.int/csr/don/2010_08_06/en/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔