(44.192.112.123) 您好!臺灣時間:2021/03/06 07:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖珮君
研究生(外文):Pei-Chun Liao
論文名稱:轉錄因子OsbHLH068可促進植物鹽逆境耐受性
論文名稱(外文):Rice transcription factor, OsbHLH068, confers salinity stress tolerance
指導教授:張孟基
指導教授(外文):Men-Chi Chang
口試委員:侯新龍洪傳揚葉國楨謝旭亮
口試委員(外文):Shin-Lon HoChwan-Yang HongKuo-Chen YehHsu-Liang Hsieh
口試日期:2014-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:111
中文關鍵詞:bHLH轉錄因子非生物逆境鹽逆境鹽耐受性
外文關鍵詞:bHLH transcription factorabiotic stresssalt stresssalt stress tolerance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
bHLH 轉錄因子調節植物生長發育及生理反應。水稻之 bHLH 轉錄因子基因家族共有173個成員,然而此些轉錄因子於逆境下之調控角色仍未明瞭。本研究旨在探討水稻 OsbHLH068 轉錄因子於植物逆境下之調控角色。首先利用水稻經非生物逆境處理所得之微矩陣晶片( microarray ) 數據挑選出非生物逆境誘導的 OsbHLH 基因,其中OsbHLH068 為受鹽高度誘導之轉錄因子,且相對應之阿拉伯芥同源基因為 AtbHLH112。經 RT-PCR 及 GUS 分析 OsbHLH068::GUS 及AtbHLH112::GUS 轉殖株並確認此兩基因皆受鹽逆境誘導且表現於管束組織之側根及根原基。而相較於阿拉伯芥野生型 (Col-0),atbhlh112 突變株較不耐逆境且葉片溫度較低。OsbHLH068 異源互補 ( heterologous expression ) 突變株AtbHLH112P::OsbHLH068-GFP 可功能性互補 atbhlh112 不耐鹽逆境的生理缺陷。35S::OsbHLH068 及 AtbHLH112P::OsbHLH068-GFP 轉植株具有發芽後期生育延遲 ( Post-germination developmental arrest, PGDA ) 之外表型,其在逆境下胚根突破種皮後子葉不完全展開。分析 OsbHLH068 蛋白質之次細胞定位與組織表現位置,發現融合蛋白 OsbHLH068-GFP 及 GFP-OsbHLH068 皆表現於細胞核內,並且表現於地上部及地下部之管束組織中。最後,相較於水稻野生型台農67號,35S::OsbHLH068 之轉殖水稻幼苗在 250 mM 高鹽處理下能於其第一葉之葉鞘分泌出較多的鹽類結晶。綜合以上結果顯示 OsbHLH068 為水稻鹽逆境耐受性之正向調控轉錄因子。

The basic/helix-loop-helix (bHLH) transcription factors (TFs) play important roles in the regulation of diverse developmental and physiological processes in plants. So far, at least 173 OsbHLH genes have been identified in rice. Though the expression levels of several OsbHLH genes were noticed to be up-regulated by salt treatments, such as OsbHLH068 gene; however, the gene functions of OsbHLH068 in salt-stress tolerance of rice are still unknown. In this study, the roles of OsbHLH068 and its Arabidopsis ortholog, AtbHLH112, were investigated under salt stress with reverse-genetics approaches. In Arabidopsis, under salt-treatment, the atbhlh112 mutant displays salt-intolerance and low leaf-temperature phenotypes. These physiological defects in atbhlh112 mutant could be complemented by heterologous expression of OsbHLH068 gene. In addition, heterologous over-expression of OsbHLH068 gene in Arabidopsis causes a post-germination developmental arrest (PGDA) phenotype, which refers to non-fully expanded cotyledon under salt treatment. Histochemical staining of promoter::GUS assay in transgenic Arabidopsis indicated that AtbHLH112 expressed in vascular tissue and trichome. Both OsbHLH068-GFP and GFP-OsbHLH068 fusion proteins are localized in the nucleus. Interestingly, compared with wide type (WT, Tainung67), the phenotypic analysis of over-expressed OsbHLH068 transgenic rice seedling showed increased salt crystals accumulation at the base of 1st leaf sheath under 250 mM NaCl treatment. Taken together, these results suggest that OsbHLH068 is a positive regulator that is involved in stress response of plant salt-stress tolerance.

目錄
誌謝 i
中文摘要 ii
英文摘要 iii
圖表目錄 2
縮寫字對照表 2
第一章 前言 1
第二章 前人研究 4
一、bHLH 轉錄因子之演化過程與基因註解 4
1. bHLH 轉錄因子蛋白質結構與 DNA 結合活性 4
2. bHLH 轉錄因子系統性分群之演化 5
3. bHLH 轉錄因子之系統性基因功能註解 6
4. OsbHLH068 系統性分群整理 10
二、bHLH 轉錄因子於非生物逆境下之功能 10
三、鹽害逆境下植物之生理反應及機制 14
1. 鹽害逆境造成之毒害 14
2. 耐鹽機制的探討 14
2.1 滲透逆境耐受性 15
2.2 鹽類運送與排除機制 16
2.2.1 鹽類運送 16
2.2.2 鹽濃度訊號感知與鹽類排除 16
2.3 組織耐鹽性 17
2.3.1 胞內分室作用 ( compartmentalization ) 17
2.3.2 離子狀態平衡 ( ion-homeostasis ) 18
2.3.3 組織區隔 ( tissue sequestration ) 19
四、研究目的及實驗架構 20
第三章 材料與方法 21
一、水稻 bHLH X 群基因表現分析 21
1. 利用生物資訊分析OsbHLH X群成員於植物荷爾蒙下之表現情形 21
2. 轉錄因子 OsbHLH068 及鹽害逆境下之 Na+ 轉運蛋白基因表現圖譜分析 21
二、阿拉伯芥與水稻同源bHLH轉錄因子 X 群之分群 21
三、試驗材料 22
1. 轉基因水稻 22
1.1 轉基因水稻種子消毒及栽培過程 22
1.2 轉基因水稻構築及構築流程 22
1.3 轉基因水稻同質結合子植株篩選流程 23
2. 轉基因阿拉伯芥 23
2.1 轉基因阿拉伯芥構築及構築流程 24
2.2 轉基因阿拉伯芥種子消毒及栽培過程 24
2.3 轉基因阿拉伯芥同質結合子植株篩選流程 24
2.4 轉基因阿拉伯芥之分子鑑定 25
四、水稻生長條件與鹽害逆境處理 25
1. 水稻鹽害逆境之逆境處理 25
1.1 轉基因水稻幼苗初步外表型分析及逆境處理條件測試 25
五、阿拉伯芥生長條件與鹽害逆境處理 25
1. 無菌培養條件之鹽害逆境處理 25
1.1 轉基因阿拉伯芥幼苗之基因表現及分子鑑定 26
1.2 轉基因阿拉伯芥苗期逆境處理條件 26
1.2.1 逆境處理下之發芽率分析 26
1.2.2 逆境處理下之根長分析 26
2. 盆栽試驗條件之鹽害逆境處理 27
2.1 轉基因阿拉伯芥之植株外表型鑑定 27
2.2 轉基因阿拉伯芥植株金屬元素含量測定 28
六、水稻及阿拉伯芥轉殖株之分子鑑定 29
1. 植物基因體組DNA萃取 29
2. DNA洋菜瓊脂膠體電泳分析 29
3. DNA-based 基因型判定分析 29
七、水稻及阿拉伯芥轉殖株之基因表現分析 30
1. 基因表現分析 30
1.1 RNA之抽取及製備 30
1.2 RNA洋菜瓊脂膠體電泳分析及OD值測定 30
1.3 RNase free DNaseI處理 30
1.4 cDNA合成之反轉錄反應 31
1.5半定量聚合&;#37238;連鎖反應 (RT-PCR) 31
1.6 即時定量聚合&;#37238;鏈鎖反應(qRT-PCR) 32
2. GUS 基因表達組織部位生化染色分析法 32
2.1 GUS染色方法 32
2.2 逆境下之基因表現組織部位分析 32
八、水稻及阿拉伯芥轉殖流程 33
1. 水稻及阿拉伯芥轉殖 33
1.1 構築黏接反應(Ligation) 33
1.2 大腸桿菌轉形作用( Transformation ) 33
1.2.1 大腸桿菌勝任細胞製備 33
1.2.2 質粒大腸桿菌轉形-熱休克法 34
1.2.3 大腸桿菌質粒DNA小量純化 34
1.2.4 檢測大腸桿菌質粒DNA-酵素截切法 34
1.3 植物材料預備 34
1.4 農桿菌轉形 35
1.4.1 農桿菌菌株GV3101勝任細胞製備 35
1.4.2 質粒農桿菌轉形-電穿孔法 35
1.4.3 轉形後農桿菌質粒檢測 35
1.5 阿拉伯芥轉形-花序感染法 36
第四章 結果 37
一、水稻 bHLH X 群成員之親緣關係 37
1. OsbHLH X群親緣關係 37
二、水稻 bHLH X 群基因表現分析 37
1. 利用生物資訊分析OsbHLH F亞族成員受植物荷爾蒙之誘導表現情形 37
2. OsbHLH068 與 AtbHLH112 於非生物逆境下之基因表現 38
三、OsbHLH068 與 AtbHLH112 於鹽害逆境下之基因表現組織部位分析 41
1. OsbHLH068 基因組織專一性表達位置 41
2. AtbHLH112 基因組織專一性表達位置 41
四、基因轉殖植株之分子鑑定與蛋白質次細胞定位 42
1. 阿拉伯芥轉殖植株之分子鑑定 42
2. 阿拉伯芥轉殖植株之蛋白質次細胞定位 43
五、OsbHLH068 之基因功能性分析 43
1. 阿拉伯芥幼苗之基因功能性分析 43
1.1 種子萌芽率 43
1.2 種子發芽後期生育延遲現象 ( PGDA ) 及存活率 45
1.3 阿拉伯芥幼苗於鹽逆境下之熱紅外線攝相儀 ( Thermograph ) 呈相分析 45
1.4 阿拉伯芥幼苗根長分析 46
2. 阿拉伯芥成株之基因功能性分析 9
2.1 阿拉伯芥成株於鹽逆境下之之熱紅外線攝相儀 ( Thermograph ) 呈相分析 47
2.2 阿拉伯芥成株於鹽逆境下之外表型分析 47
2.3 阿拉伯芥鈉與鉀金屬元素含量測定 48
2.4 阿拉伯芥成株於鹽逆境下之基因表現型分析 48
3. 水稻成株之基因外表型分析 50
3.1 T1轉基因水稻幼苗於高鹽逆境下之反應 50
第五章 討論 51
一、 OsbHLH068 可功能性互補 atbhlh112 生長發育之缺陷 51
二、 OsbHLH068 透由調節氣孔開合提升滲透逆境耐受性 51
三、 OsbHLH068 與 AtbHLH112 參與植物內生 Na+/K+ 離子平衡狀態之調節 55
四、 探討 OsbHLH068 與 AtbHLH112 基因功能之異同與抗鹽逆境原因 61
五、 結語 62
參考文獻 65


楊蕓瑋。2014。利用微矩陣列晶片分析梗秈水稻品種 TNG 67 與 TCN 1 於冷、鹽害逆境下之轉錄體分析。博士論文
陳依甄。2012。水稻轉錄因子 OsbHLH061 與 OsbHLH068 於非生物逆境下基因表現及功能性分析。碩士論文
Abe. H., T. Urao, T. Ito, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell. 15: 63-78.
Adams. E. and R. Shin. (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol. 56(3): 231-249.
Almeida. P., K. Katschnig, and A. H. de Boer. (2013) HKT Transporters—State of the Art. Int J Mol Sci. 14: 20359-20385.
Atchley. W. R. and W. M. Fitch. (1997) A natural classification of the basic helix–loop– helix class of transcription factors. Proc Natl Acad Sci. 94(10): 5172-5176.
Badawi. M., Y. V. Reddy, Z. Agharbaoui, Y. Tominaga, J. Danyluk, F. Sarhan, and M. Houde. (2008) Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. Plant Cell Physiol. 49(8): 1237-1249.
Barraga’n. V., E. O. Leidi, Z. Andre’s, L. Rubio, A. D. Luca, J. A. Ferna’ndez, B. Cubero, and J. M. Pardo. (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell. 24: 1127–1142.
Bassil. E., H. Tajima, Y-C. Liang, M-A. Ohto, K. Ushijima, R. Nakano, T. Esumi, A. Coku, M. Belmonte, and E. Blumwald. (2011a) The Arabidopsis Na+/H+ Antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. The Plant Cell. 23(9): 3482-3497.
Bassil. E., C. Ardian, E. Blumwald. (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot. 63(16): 5727-5740.
Boyes. D. C., A. M. Zayed, R. Ascenzi, A. J. McCaskill, N. E. Hoffman, K. R. Davis, and J. Gorlach. (2001) Growth stage–based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. The Plant Cell. 13(7): 1499-510.
Buck. M. J and Atchley W. R. (2003) Phylogenetic analysis of plant basic Helix-Loop-Helix proteins. J Mol Evol. 56:742–750.
Castilhos G., F. Lazzarotto, L. Spagnolo, M. Helen, B. Zanettini, M. Margis. (2014) Possible roles of basic helix-loop-helix transcription factors in adaptation to drought. Plant Sci. 223: 1-7.
Century. K., T. L. Reubur, and Q. J. Ratcliffe. (2008) Regulating the regulators: the future prospects for transcription factor-based agricultural biotechnology products. Plant Physiol. 147(1): 20-29.
Chen. H-C., S-G. Hwang, S-M. Chen, C-T. Shii, W-H. Cheng. (2011) ABA-mediated heterophylly is regulated by differential expression of 9-cis-epoxycarotenoid dioxygenase 3 in lilies. Plant Cell Physiol. 52(10):1806-1821.
Chen. Y., F. Li, Y. Ma, K. Chong, and Y-Y. Xu. (2013) Overexpression of OrbHLH001, a putative helix–loop–helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice. J Plant Physiol. 170(1): 93-100.
Chinnusamy. Y., M. Ohta, S. Kanrar, B-H. Lee, X. Hong, M. Agarwal, and J-K. Zhu. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17: 1043-1054.
Choi. Y-E., E. Harada, G-H. Kim, E-S. Yoon, and H. Sano. (2004) Distribution of elements on tobacco trichomes and leaves under cadmium and sodium stresses. J Plant Biol. 47(2): 75-82.
Cotsaftis. O., D. Plett, N. Shirley, M. Tester, and M. Hrmova. (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One. 7(7): e39865.
Das. P. K., D-H. Shin, S-B. Choi, Y. Park. (2012) Sugar-hormone cross-talk in anthocyanin biosynthesis. Mol Cells. 34(6): 501-507.
Dehestani. A., G. Ahmadian, A. H. Salmanian, N. B. Jelodar, and K. Kazemitabar. (2010) Transformation efficiency enhancement of Arabidopsis vaccum infiltration by surfactant application and appical inflorescence removal. Trakia Journal of Sciences. 8(1): 19-26.
Die. J. V and B. Roman. (2012) RNA quality assessment: a view from plant qPCR studies. J Exp Bot. 63(17): 6069-6077.
Dolan. L. (2006) Positional information and mobile transcriptional regulators determine cell pattern in the Arabidopsis root epidermis. J. Exp. Bot. 57(1): 51-54.
Dow. (2012) Transcription factors important in the regulation of salinity tolerance. Master thesis.
Dortje. G., C. Li, H. Mohan, and N. Probst. (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. 5(151)
Duek. P. D. and C. Fankhauser. (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci. 10(2): 51-54.
Farquhar. G. D. and T. D. Sharkey. (1982) Stomatal conductance and photosynthesis. Ann. Rev Plant Physiol. 33: 17-45.
Fukuda. A., A. Nakamura, N. Hara, S. Toki, and Y. Tanaka. (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta. 233: 175-188.
Gabriela. T., E. Huq, and P. H. Quail. (2003) The Arabidopsis basic/Helix-Loop-Helix transcription factor family. The Plant Cell. 15: 1749–1770.
Gajdanowicz. P, E. Michard, M. Sandmann, M. Rocha, L. G. Guedes Correa, S. J. RA, J. L. GP, W. Gonzaleza, JB. Thibaud, J. T. V. Dongen, and I. Dreyer. (2011) Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues. Proc Natl Acad Sci. 108(2): 864-869.
Gutierrez-Alcala. G., C. Gotor, A. J. Meyer, M. Fricker, J. M. Vega, and L. C. Romero. (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci. 97(20): 11108–11113.
Guan. Q-M., J-M. Wu, X. Yue, Y-Y. Zhang, and J-H. Zhu. (2013) A nuclear calcium-sensing pathway is critical for gene regulation and salt stress tolerance in Arabidopsis. PLOS Genet. 9(8): e1003755.
Heim. MA., J. Marc, M. Werber, C. Martin, B. Weisshaar, and PC. Bailey. (2003) The basic Helix–Loop–Helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity. Mol Biol Evol. 20(5): 735-747.
Hichri. I., F. Barrieu, J. Bogs, C. Kappel, S. Delrot, and V. Lauvergeat. (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 62(8): 2465-2483.
Hindt. M. N and Guerinot M. L. (2012) Getting a sense for signals: Regulation of the plant iron deficiency response. Biochimica et Biophysica Acta. 1823: 1521–1530.
Horie. T., K. Ichirou, and M. Katsuhara. (2012) Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice. 5:11
Hussain. S. S., M. A. Kayani, and M. Amjad. (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog. 27(2): 297-306.
Hwang, H-Y., J-Y. Kim, H-Y. Min, M-K. Kim, J-A Choi, E-H Lan, W-Z. Bae, Y-M. Luan, S. Cho, H. Kim, and B. Gi. (2013) Unique features of two potassium channels, OsKAT2 and OsKAT3, expressed in rice guard cells. PLOS One. 8(8): e72541.
Ivashikina. Natalya., D. Rosalia, S. Fischer, P. Ache, and R. Hedrich. (2005) AKT2/3 subunits render guard cell K+ channels Ca2+ sensitive. J Gen Physiol. 125: 483-492.
Jia. H-T., J. M. Pardo, G. Batelli, M. J. V. Oosten, R. A. Bressane, and X. Li. (2013) The Salt Overly Sensitive (SOS) Pathway: Established and emerging roles. Mol Plant. 2: 275-286.
Jin. J-P., H. Zhang, L. Kong, G. Gao, and J-C. Luo. (2014). PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research. 42(D1): D1182-D1187.
Jiang. W-B and D-Q. Yu. (2009) Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol. 9:96.
Jiang. Y-Q., B. Yang, M. K. Deyholos. (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics. 282: 503–516.
Jiang. G., K. Yi, N.D. Pires, B. Menand, and L. Dolan. (2011) RSL genes are sufficient for rhizoid system development in early diverging land plants. Development. 138(11): 2273-2281.
Jiang. Y., Z. Cai, W. Xie, T. Long, H. Yu, and Q. Zheng. (2012) Rice functional genomics research: Progress and implications for crop genetic improvement. Biotechnol Adv. 30(5): 1059-1070.
Jiang. Y-J., G. Liang, and D-Q. Yu. (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant. 5(6): 1375-1388.
Khong. G-N., F. Richaud, Y. Coudert, PK. Pati, C. Santi, C. Perin, JC. Breitler, D Meynard, N. Vinh, E. Guiderdoni, and P. Gantet. (2008) Modulating rice stress tolerance by transcription factors. Biotechnol Genet Eng Rev. 25: 381-403.
Kim. J and H-Y. Kim. (2006) Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Lett. 580(22): 5251-5256.
Kunz. H-H., M. Gierth, A. Herdean, M. Satoh-Cruz, DM. Kramer, C. Spetea, and JI. Schroeder. (2014) Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci. 111(20): 7480-7485.
Kinoshita. N., A. Berr, C. Belin, R. Chappuis, NK. Nishizawa, and L. Lopez-Molina. (2010) Identification of growth insensitive to ABA3 (gia3) , a recessive mutation affecting ABA signaling for the control of early post-germination growth in Arabidopsis thaliana. Plant Cell Physiol. 51(2): 239-251.
Lebaudy. A., F. Pascaud, A. A.Very, C. Alcon, I. Dreyer, J. B. Thibaud, and B. Lacombe. (2010) Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells. 285(9): 6265-6274.
Lee. B-H., D. A. Henderson, and J-K. Zhu. (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. The Plant Cell. 17: 3115-3175.
Li, X-X., X-P Duan, H-X. Jiang, Y-J. Sun, Y-P Tang, Z. Yuan, J-K. Guo, W-Q. Liang, J-Y Yin, H. Ma, J. Wang, and D-B. Zhang. (2006) Genome-wide analysis of basic/Helix-Loop-Helix transcription factor family in Rice and Arabidopsis. Plant Physiol. 141(4):1167-1184.
Li. H-M., J-Q. Sun, Y-X. Xu, H-L. Jiang, X-Y. Wu, and C-Y. Li. (2007) The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol. 65: 655-665.
Li. F., S-Y. Guo, Y. Zhao, D-Z. Chen, K. Chong, and Y-Y. Xu. (2010) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang wild rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep. 29(9): 977-986.
Li. Y-J., F. Li, Y-R. Fu, G-J. Huang, C-I. Wu, and C-C. Zheng. (2013) NFYA1 is involved in regulation of postgermination growth arrest under salt stress in Arabidopsis. PLoS One. 8(4): e61289.
Littlewood. T. D. and G. I. Evan. (1995) Transcription factors 2: helix-loop-helix. Protein Profile 2: 621–702.
Liu. W-W., H-H. Tai, S-S Li, W. Gao, M. Zhao, C-X. Xie and W-X. Li. (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol. 201: 1192-1204.
Lorenzo. O., J. M. Chico, J. J. Sanchez-Serrano, and R. Solano. (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell. 16(7): 1938–1950.
Lorenzo. CP., A. Galstyan, I. RV, J. F. MG, M. J. R. BC, and D. L. Robertson. (2010) Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, Poplar, Rice, Moss, and Algae. Plant Physiol. 153: 1398–1412.
Lopez-Molina. L., S. Mongrand, and N-H. Chua. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci. 98(8): 4782-4787.
Lopez-Molina. L., S. Mongrand, D. T. McLachlin, B. T. Chait, and N-H. Chua. (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32(3): 317-328.
Matou&;#353;ek. J., T. Kocabek, J. Patzak, Z. Fussy, J. Prochazkova, and A. Heyerick. (2013) Combinatorial analysis of lupulin gland transcription factors from R2R3Myb, bHLH and WDR families indicates a complex regulation of chs_H1 genes essential for prenylflavonoid biosynthesis in hop (Humulus Lupulus L.). BMC Plant Bio. 12(27).
Menand. B., K. Yi, S. Jouannic, L. Hoffmann, E. Ryan, P. Linstead, D. G. Schaefer, and L. Dolan. (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science. 316(5830): 1477-1480.
Michael. JB. and Atchley WR. (2003) Phylogenetic analysis of plant basic Helix-Loop-Helix proteins. J Mol Evol. 56(6):742-50.
Miyamoto. K., T. Shimizu, S. Mochizuki, Y. Nishizawa, E. Minami, H. Nojiri, H. Yamane, and K. Okada. (2013) Stress-induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumulation in rice. Protoplasma. 250(1): 241-249.
Morohashi. K., M. Zhao,M.Yang, B. Read, A. Lloyd,R. Lamb, and E. Grotewold. (2007) Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 145(3): 736-746.
Munns. R and M. Tester. (2008) Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651–681.
Munns. R., R. K. James, B. Xu, A. Athman, S-J. Conn, C. Jordans, C-S. Byrt, R. A. Hare, S. D. Tyerman, M. Tester, D. Plett, and M.Gilliham. (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol. 30(4): 360-364.
Nakamura. J., T. Yuasa, T-T. Huong, K. Harano, S. Tanaka, T. Iwata, T. Phan, and M. Iwaya-Inoue. (2011) Rice homologs of inducer of CBF expression (OsICE) are involved in cold acclimation. Plant Biotechnol. 28: 303-309.
Nakashima. K., Y. Ito, K. Yamakuguchi-Shinozaki. (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and Grasses. Plant Physiol. 149: 88-95.
Ogo. Y., R. N. Itai, H. Nakanishi, T. Kobayashi, M. Takahashi, S. Mori, and NK. Nishizawa. (2007) The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J. 51(3): 366-377.
Ogo. Y., R. N. Itai, T. Kobayashi, MS. Aung, H. Nakanishi, NK. Nishizawa. (2011) OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil. Plant Mol Biol. 75: 593-605.
Olias. R., Z. Eljakaoui, J. Li, P. A. De Morales, M. C. , Marin-Manzano, J. M. Pardo, and A. Belver. (2009) The plasma membrane Na+ /H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ. 32(7): 904-916.
Pillitteri. L. J. and K. U. Torri. (2007) Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays. 29(9): 861-870.
Pires. N. D. and L. Dolan. (2010) Origin and diversification of basic-Helix-Loop-Helix proteins in plants. Mol Biol Evol. 27(4): 862–874.
Pires. N. D. and L. Dolan. (2012) Morphological evolution in land plants: new designs with old genes. Philos Trans R Soc Lond B Biol Sci. 367(1588): 508-518.
Pires N. D., K. Yi, H. Breuninger, B. Catarino, B. Menand, and L. Dolan. (2013) Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci. 110(23): 9571-9576.
Quan. RD., H-X. Lin, M. I, Y-G. Zhang, W-H. Cao, Y-Q. Yang, M. Shang, S-Y. Chen, JM. Pardo, Y. Guo. (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. The Plant Cell. 19: 1415-1431.
Rana Munns and Mark Tester. (2008) Mechanisms of Salinity Tolerance. Annu Rev Plant Biol. 59: 651-681.
Rengasamy P. (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol. 37: 613-620.
Ruggiero. B., H. Koiwa, Y. Manabe, T. M. Quist, G. Inan, F. Saccardo, R. J. Joly, P. M. Hasegawa, R. A. Bressan, and A. Maggio. (2004) Uncoupling the effects of absicsic acid on plant growth and water relations. Analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiol. 136(2): 3134-47.
Sasaki-Sekimoto. Y., Y. Jikumaru, T. Obayashi, H. Saito, S. Masuda, Y. Kamiya, H. Ohta, and K. Shirasu. (2013) Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol. 163(1): 291-304.
Seo. J-S., J. Joo, M-J. Kim, Y-K. Kim, B-H. Nahm, S-I. Song, J-J. Cheong, J-S. Lee, J-K. Kim, and Y-D. Choi. (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 65(6): 907-921.
Shinozaki. K. and K. Yamakugi-Shinozaki. (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot. 58(2): 221-227.
Sharma. T., I. Dreyer, and J. Riedelsberger. (2013) The role of K+ channels in uptake and redistribution of potassium in themodel plant Arabidopsis thaliana. Front. Plant. Sci. 4(224).
Shuji. Y., F. J. Quintero, B. Cubero, M. T. Ruiz, R. A. Bressan, P. M. Hasegawa, and J. M. Pardo. (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 30(5): 529-539.
Sirault. X.R.R., R. A. James, and R. T. Furbank. (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol. 36: 970–977.
Stuart. J. R., S. Negrao, M. Tester. (2014) Salt resistant crop plants. Curr Opin Biotechnol. 26:115-124.
Sunarpi., H. Tomoaki, J. Motoda, M. Kubo, H. Yang, K-Y. Yoda, R. Horie, W-Y. Chan, H-Y. Leung, K. Hattori, M. Konomi, M. Osumi, M. Yamagami, JL. I. Schroeder, and N. Uozumi. (2005) Enhanced salt tolerance mediated by AtHKT1 transporter- induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44: 928-938.
Takeda. S., C. Gapper, H. Kaya, E. Bell, K. Kuchitsu, and L. Dolan. (2008) Local positive feedback regulation determines cell shape in root hair cells. Science. 319(5867): 1241-1244.
Tan. B-C., L. M. Joseph, W-T. Den, L. Kiu, Q-B. Li, K. Cline, and D. R. McCarty. (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 35(1): 44-56.
Toda. Y., M. Tanaka, D. Ogawa, K. Kurata, K. Kurotani, Y. Habu, T. Ando, K. Sugimoto, N. Mitsuda, E. Katoh, K. Abe, A. Miyao, H. Hirochika, T. Hattori, and S. Takeda. (2013) RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-c bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. The Plant Cell. 25: 1709-1725.
Todaka. D., K. Nakashima, K. Shinozaki, and K. Yamaguchi-Shinozaki. (2012) Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice. 5: 6.
Tominaga-Wada. R., Y. Nukumizu, S. Sato, and T. Wada. (2013) Control of plant trichome and root hair development by a tomato (Solanum lycopersicum) R3 MYB transcription factor. PLoS One. 8(1): e54019.
Ulrich. D., A. B. Stephan., H. Tomoaki, W. Luo, G-H. Xu, and J. I. Schroeder. (2014) Plant salt-tolerance mechanisms. Trends Plant Sci. 1145: 1-9.
Rajabi. F. and S. Vazan (2014) Effect of salinity on Na+ and K+ compartmentation in salt tolerant and sensitive wheat genotypes. Scholarly Journal of Agricultural Science 4(1): 14-23.
Yamaguchi. T., G. S. Aharon, J. B. Sottosanto, and E. Blumwald. (2005) Vacuolar Na+-H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci. 102(44): 16107–16112.
Yamaguchi. T., S. Hamamoto, and N. Uozumi. (2013) Sodium transport system in plant cells. Front Plant Sci. 4(410).
Yamaguchi-Shinozaki. K. and K. Shinozaki. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 57: 781-803.
Yi. K., B. Menand, E. Bell, and L. Dolan. (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet. 42(3): 264-267.
Zheng. X., R. Henriques, S-S. Lin, Q-W. Niu, N-H. Chua. (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 1(2): 641-646.
Zheng. L-Q.,Y.-H. Ying., L. Wang, F. Wang, J. Whelan, H-X. Shou. (2010) Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol. 10(166).
Zheng. S., T. Pan, L-G. Fan, Q-S Qiu. (2013) A Novel AtKEA Gene family, homolog of bacterial K+ antiporters, plays potential roles in K+ osmotic adjustment in Arabidopsis. PLOS one. 8(11): e81463.
Zhou. J., F. Li, J-I. Wang, Y. Ma, K. Chong, and Y-Y. Xu. (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J Plant Physiol. 166(12): 1296-1306.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔