(54.236.58.220) 您好!臺灣時間:2021/03/08 09:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李亞珊
研究生(外文):Ya-Shan Lee
論文名稱:具有溫度補償的毫微功耗振盪器之設計
論文名稱(外文):Design of Sub-microwatt Oscillators with Temperature Compensations
指導教授:劉深淵
指導教授(外文):Shen-Iuan Liu
口試委員:吳介琮黃柏鈞蔡建泓
口試委員(外文):Jieh-Tsorng WuPo-Chiun HuangChien-Hung Tsai
口試日期:2014-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:51
中文關鍵詞:低功耗振盪器溫度補償
外文關鍵詞:low poweroscillatortemperature compensation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:293
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇論文的主題主要分為兩個部分,第一個部分是設計一個低於微瓦且低溫度係數的弛張振盪器。此電路運用電晶體工作在次臨界區,電流模式的比較器以及汲取電流式反向器來減少消耗的功率,且利用不同閘極氧化層厚度的電晶體來實做低溫度係數的電流源,再以曲度電流源和分段式電流源補償使得振盪器有低溫度係數。在0.18-μm CMOS 的製程中,實現了振盪頻率為1.1MHz 的振盪器,在1.2 伏特供給電壓的操作下,振盪器消耗功率為420nW,在-20~80°C 平均的量測溫度係數為49.7ppm/°C 計算的第一優值、第二優值和第三優值分別為124.2dB、-136.7dB 和101dB。
第二部分則是以主動電組取代弛張振盪器中被動電組的使用,使得操作在低於微瓦的弛張振盪器可以小布局面積實現。在此電路中,我們以正比於絕對溫度與反比於絕對溫度的電流源實現參考電流源,且利用不同閘極氧化層厚度的電晶體來實做電壓產生器,再以分段式曲度電流源補償來減少振盪器溫度的變異。1.6MHz 的振盪器,在1 伏特供給電壓的操作下,振盪器消耗功率為631nW,在-20~80°C 平均的量測溫度係數為66ppm/°C 計算的第一優值、第二優值和第三優值分別為124.1dB、-155.2dB 和114dB。

This thesis consists of two parts. The first part aims to design a submicrowatts and low temperature coefficient (TC) relaxation oscillator. In this oscillator, the transistors in the subthreshold region, the current-mode comparator, and the current-starving inverters are used to reduce the power of the relaxation oscillator. The low TC current reference is realized with different gate-oxide thickness mosfets. Besides, we developed the curvature current source and the piecewise current source to compensate the TC of the oscillator. This oscillator is fabricated in a 0.18-μm CMOS process and its power consumption is 410nW with a supply voltage of 1.2V. The measured average TC is 49.7ppm/°C for the temperature of -20~80°C. The calculated FOM1, FOM2 and FOM3 are 124.2dB, -136.7dB and 101dB, respectively.
The second part implements a resistor-free oscillator. In this oscillator, we proposed the transistors in the linear region to replace passive resistors. The low TC
current reference is realized by PTAT and CTAT current and the voltage generator is implemented with different gate-oxide thickness mosfets. Besides, the piecewise curvature current is used to release the temperature variations. For the 1.6MHz oscillator, its power consumption is 631nW with a supply voltage of 1V. The average temperature coefficient is 66ppm/°C for the temperature of -20~80°C, and the calculated power FOM1, FOM2 and FOM3 are 124.1dB, -155.2dB and 114dB,
respectively.

1. Introduction………………………………………………………… 1
1.1 On-chip Oscillators………………………………………….. 1
1.2 Overview…………………………………………………….. 2
2. A Nano-watts 1.1MHz CMOS Relaxation Oscillator with
Temperature Compensation……………………………………….. 5
2.1 Motivation…………………………………………………… 5
2.2 Circuit Architecture……………………………….…………. 7
2.2.1 Overview of the Approach…….…………………….. 7
2.2.2 Low TC Current Reference……….…………………. 9
2.2.3 Curvature Current Source.…………………...………. 10
2.2.4 Piecewise Current Source…………………..………... 14
2.2.5 Overall Proposed Relaxation Oscillator……………... 15
2.3 Experimental Results………………………………………… 19
2.3.1 Measurement Results..………………………………. 19
2.3.2 Die Photo and Performance Summary......................... 20
2.4 Conclusion………………………………………………..…. 24
3. A 0.005mm2 631nW 66ppm/℃ 1.6MHz CMOS Resistor-free
Relaxation Oscillator……………………………………………….. 25
3.1 Motivation…………………………………………………… 25
3.2 Circuit Architecture……………………………….…………. 27
3.2.1 Overview of the Approach…….…………………….. 27
3.2.2 Complementary TC Bias Current Sourc….…………. 28
3.2.3 Proposed PVT Tracking Voltage Generator....………. 32
3.2.4 Piecewise Curvature Source.………..……..………... 35
3.2.5 Overall Proposed Relaxation Oscillator……………... 36
3.3 Experimental Results………………………………………… 40
3.3.1 Measurement Results..………………………………. 40
3.3.2 Die Photo and Performance Summary......................... 41
3.4 Conclusion………………………………………………...…. 46
4. Conclusion and Future Work……………………………………… 47
4.1 Conclusion…………………………………………………… 47
4.2 Future Work……………………………………………….…. 48
Bibliography ……………………………………………………………….. 49

[1] U. Denier, “Analysis and design of an ultralow-power CMOS relaxation oscillator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1973–1982, Aug. 2010.
[2] T. Tokairin, K. Nose, K. Takeda, K. Noguchi, T. Maeda, K. Kawai and M. Mizuno, “A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feed-forward period control scheme,” Dig. Symp. VLSI Circuits, Jun. 2012, pp. 16-17.
[3] Y. H. Chiang and S. I. Liu, “A submicrowatt 1.1MHz CMOS relaxation oscillator with temperature compensation,” IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 60, no.12, pp. 837–841, Dec. 2013.
[4] Y. H. Chiang and S. I. Liu, "Nanopower CMOS relaxation oscillators with sub-100ppm/°C temperature coefficient", accepted by IEEE Trans. Circuits and Systems-II: Express Briefs, vol. 61, pp. , 2014.
[5] N. Sadeghi, A. Sharif-Bakhtiar, and S. Mirabbasi, “A 0.007-mm2 108-ppm/°C 1-MHz relaxation oscillator for high-temperature applications up to 180°C in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no.7, pp. 1692–1701, Jul. 2013.
[6] K. Choe, O. D. Bernal, D. Nuttman, and M. Je, “A precision relaxation oscillator with a self-clocked offset-cancellation scheme for implantable biomedical SoCs,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp.402–403.
[7] Y. Cao, P. Leroux, W. De Cock, and M. Steyaert, “A 63,000 Q-factor relaxation oscillator with switched-capacitor integrated error feedback,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 402–403.
[8] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp.1150–1158, Jun. 2010.
[9] K.-J. Hsiao, “A 32.4ppm/°C 3.2-1.6V self-chopped relaxation oscillator with adaptive supply generation,” Dig. Symp. VLSI Circuits, Jun. 2012, pp. 14–15.
[10] F. Sebastiano, L.J. Breems, K.A.A. Makinwa, S. Drago, D.M.W. Leenaerts, and B. Nauta, “A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless
sensor networks,” IEEE J. Solid-State Circuits, vol. 46, no.7, pp. 1544–1552, Jul. 2011.
[11] A. Paidimarri, D. Griffith, A. Wang, A. P. Chandrakasan, and G. Burra, “A 120nW 18.5kHz RC oscillator with comparator offset cancellation for ±0.25% temperature stability,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 402–403.
[12] V. De Smedt, P. De Wit, W. Vereecken, and M. S. J. Steyaert, “A 66μW 86ppm/°C fully-integrated 6MHz Wienbridge oscillator with a 172 dB phase noise FOM,” IEEE J. Solid-State Circuits, vol.44, no.7, pp. 1990–2001, Jul. 2009.
[13] J. Lee and S. Cho, “A 10MHz 80μW 67ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS,” Dig. Symp. VLSI Circuits, Jun. 2009, pp. 226–227.
[14] K. Ueono, T. Hirose, T. Asai, and Y. Amemiya, “A 300nW 15ppm/°C 20ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 44, pp. 2047–2054, Jul. 2009.
[15] Y. Osaki, T. Hirose, N. Kuroki and M. Numa, “Nano-ampere CMOS current reference with little temperature dependence using small offset voltage,” in Proc. of IEEE MWSCAS, Aug. 2010, pp. 668-671.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔