|
[Bod07] Marco Bodrato. Towards optimal toom-cook multiplication for univari- ate and multivariate polynomials in characteristic 2 and 0. In Arith- metic of Finite Fields, pages 116–133. Springer, 2007. [Can89] David G Cantor. On arithmetical algorithms over finite fields. Journal of Combinatorial Theory, Series A, 50(2):285–300, 1989. [CGPR+ 09] Maciej Ciesielski, Daniel Gomez-Prado, Qian Ren, J&;#233;r&;#233;mie Guillot, and Emmanuel Boutillon. Optimization of data-flow computations using canonical ted representation. Computer-Aided Design of Integrated Cir- cuits and Systems, IEEE Transactions on, 28(9):1321–1333, 2009. [CKA06] Maciej Ciesielski, Priyank Kalla, and Serkan Askar. Taylor expansion diagrams: A canonical representation for verification of data flow de- signs. Computers, IEEE Transactions on, 55(9):1188–1201, 2006. [Com] Compiler optimations. http://www.compileroptimizations.com/ index.html. [Ger99] Sabih H Gerez. Algorithms for VLSI design automation, volume 8. Wiley Chichester, England, 1999. [KO63] Anatolii Karatsuba and Yu Ofman. Multiplication of multidigit num- bers on automata. In Soviet physics doklady, volume 7, page 595, 1963. 25 [KZFH12] Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. Qmaxsat: A partial max-sat solver system description. Journal on Satisfiability, Boolean Modeling and Computation, 8:95–100, 2012. [MAX10] Max-sat 2010. http://maxsat.ia.udl.cat:81/10, 2010. [MAX11] Max-sat 2011. http://maxsat.ia.udl.cat:81/11, 2011. [MAX12] Max-sat 2012. http://maxsat.ia.udl.cat:81/12, 2012. [PIC] Figure of xor gate. https://asicdigitaldesign.files.wordpress. com/2007/05/high-z_solution_02.png. [PSD+ 99] Robert Pasko, Patrick Schaumont, Veerle Derudder, Serge Vernalde, and Daniela Durackova. A new algorithm for elimination of common subexpressions. Computer-Aided Design of Integrated Circuits and Sys- tems, IEEE Transactions on, 18(1):58–68, 1999. [Soo] Mate Soos. Sat-solver “cryptominisat”, version 2.9. 0 (january 20, 2011). [SS71] Doz Dr A Sch&;#246;nhage and Volker Strassen. Schnelle multiplikation grosser zahlen. Computing, 7(3-4):281–292, 1971. [Wik14a] Wikipedia. Boolean satisfiability problem — wikipedia, the free ency- clopedia, 2014. [Online; accessed 1-June-2014]. [Wik14b] Wikipedia. Conjunctive normal form — wikipedia, the free encyclope- dia, 2014. [Online; accessed 1-June-2014]. [Wik14c] Wikipedia. Convolution theorem — wikipedia, the free encyclopedia, 2014. [Online; accessed 5-June-2014]. [Wik14d] Wikipedia. Maximum satisfiability problem — wikipedia, the free en- cyclopedia, 2014. [Online; accessed 1-June-2014].
|