(18.210.12.229) 您好!臺灣時間:2021/03/01 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李長鴻
研究生(外文):Chang-Hung Lee
論文名稱:整合噴墨技術與 CMOS 系統晶片
論文名稱(外文):Integration of Inkjet Printing Technology with CMOS System-on-Chip
指導教授:林致廷林致廷引用關係
指導教授(外文):Chih-Ting Lin
口試委員:李世光吳文中呂學士廖英志鄭桂忠
口試委員(外文):Chih-Kung LeeWen-Jong WuShey-Shi LuYing-Chih LiaoKea-Tiong Tang
口試日期:2014-07-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:111
中文關鍵詞:噴墨印刷有機電晶體導電聚合物氣體感測器奈米粒子生物微機電立體晶片異質整合
外文關鍵詞:inkjet printingorganic thin-film transistorconductive polymergas sensornanoparticleBio-MEMS3D ICheterogeneous integration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機電子材料的發展,將賦予有機電子元件更多樣化的功能,例如具有生物相容性或氣體/化學感測特性的材料,能使有機元件應用在更多領域。然而有機電子電路受限於材料與製程的瓶頸,其運算效能仍難與矽晶片匹敵。若將有機電子與矽半導體元件,在晶片層面整合製作,即能兼取兩者之優點製作更多功能、高度整合且具有良好速度的新型晶片。本論文主要發展非接觸式噴墨印刷製程,噴印多種有機電子元件,並進一步將有機電子元件噴印於矽晶片表面,製作垂直堆疊結構,有效節省晶片面積的同時,亦提供整合度更高、更低功率的電子元件應用。以下為所研發之噴墨電子元件摘要介紹:
1. 雙絕緣層可調變臨界電壓電晶體
由可整合CMOS製程的電子電路著眼,利用噴墨製程製作全噴墨全有機的電晶體元件,展現可在任意表面製作簡易電子電路的製程能力。並以局部噴印high-k / low-k雙絕緣層製程,利用氟系聚合物的壓電特性,使絕緣層中產生內建電場,調變電晶體的臨界電壓,實驗結果可由-13 V平移至10 V。以此特性在同一基板上製作空乏型與增強型電晶體,實現更有彈性的電路架構。
2. 噴墨式濕度感測器
為了展現以噴墨製程實現感測器整合晶片的潛力。以有機導電聚合物材料PEDOT:PSS與噴墨製程,製作低成本低功耗的濕度感測器元件,並驗證感測材料偵測其他氣體的可能性。感測材料添加二氧化矽以及鋁氧化鋅奈米顆粒,使其對水汽的感測靈敏度提昇一倍以上,且元件的穩定性亦有顯著提昇。最後進一步以材料分析光譜探討感測機制成因。發現奈米顆粒對於水汽的物理吸附特性,使得混合感測材料的靈敏度有進一步提昇。
3. 金屬、有機導電材料傳導介面
於研究過程中亦發現,因材料的功函數差異,導電高分子材料與鋁金屬接面,會產生接觸電阻的問題。造成有機電子元件與矽晶片無法形成良好的歐姆接觸。初步研究使用奈米金溶液在鋁電極表面噴印一層奈米金薄膜,可以有效改善接觸問題。實驗將鋁金屬電極上噴印奈米金粒子薄膜作為中介層,再噴印一層PEDOT:PSS薄膜於兩電極中央通道,測量其導電性有明顯改善。
4. 實做噴墨印刷濕度感測器整合電路晶片
使用台積電0.35 μm製程技術以及BioMEMS後製程,將濕度感測材料噴印於CMOS晶片上層金屬電極表面,製作整合感測晶片。由於有機導電材料可在室溫下感測的特性,使感測元件不需額外加溫器,因此可與CMOS晶片做垂直堆疊整合,相較於現有3D IC製程技術,噴墨印刷更適合於晶片表面直接製作氣體感測器陣列。感測器晶片操作在3V,平均功耗僅154 μW,為適於應用在室內空氣品質監測、物聯網、醫療照護的低功率感測晶片。


The organic electronic devices provide promising features with the development of organic materials. For example, the organic materials with bio-compatible or gas/chemical sensing function could be utilized in the applications for bio or sensor networks. However, compare to silicon IC, the operation speed of organic circuits is still limited by the materials and fabrication processes. If the organic devices could be integrated with silicon devices on the chip level, we could take both strengths from organic and silicon electronic devices, and build a highly-integrated, multi-functional novel IC. In this dissertation, a heterogeneous integration technique which vertically connects organic electronic devices and CMOS IC is demonstrated by non-contact inkjet printing process. By inkjet printing technique, more integrated devices could be realized with lower power consumption, higher integration, and save more chip area.
First, an all-inkjet-printed organic thin-film transistor (OTFT) with double insulator layer is proposed. By using the double-layer structure with different dielectric materials, the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The threshold-voltages of the OTFTs shift between -13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology.
Than an inkjet printable humidity sensing material, PEDOT:PSS, is developed to improve the fabrication capability. Besides, different kinds of nanoparticles, SiO2 and aluminum zinc oxide (AZO), are also employed to enhance the stability and sensitivity to humidity sensing. Based on experimental results, the sensitivity can be improved by 100%; the stability can also be noticeably enhanced. To understand the sensing mechanism, a series of material analysis method is executed. Based on the material investigations, the sensing enhancement is due to physical adsorption of the blending nanoparticles. This work proposes a high sensitivity and low cost humidity sensing material for different applications
Because of the energy barrier between conductive polymer and metal, most of the metal/organic interfaces are difficult to form an ohmic contact, which could impede the integration of conductive polymer devices and CMOS chip. An inkjet-printed gold nanoparticle film as a buffer layer could modify the aluminum electrode and conquered the contact barrier. The improvement of contact resistance between nano-gold-modified aluminum electrodes and PEDOT:PSS film is experimentally tested.
Finally, a low-power, wide-dynamic-range integrated humidity sensing chip is implemented using a printable polymer sensing material with an on-chip pulse-width-modulation interface circuit. By using the inkjet printing technique, PEDOT:PSS that has humidity sensing features can be printed onto the top metal layer of a 0.35 μm CMOS IC. The developed printing-on-chip humidity sensor achieves a heterogeneous three dimensional sensor system-on-chip architecture. The humidity sensing of the implemented printing-on-chip sensor system is experimentally tested. The power consumption keeps only 154 μW. This printing-on-chip sensor provides a practical solution to fulfill an miniaturized sensing system for the applications in healthcare, indoor-air-quality monitoring, and machine-to-machine networks.


致謝 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xii
第1章 緒論 1
1-1 有機電子元件與矽半導體晶片 1
1-2 噴墨整合CMOS製程晶片 2
1-3 研究目標與貢獻 4
第2章 有機電子元件與整合晶片 7
2-1 有機電子元件與印刷製程 7
2-2 物聯網與整合晶片發展 10
第3章 有機電子元件製作與驗證 17
3-1 雙絕緣層噴墨有機電晶體 17
3-1-1 研究原理 17
3-1-2 研究方法 18
3-1-3 結果與討論 20
3-1-4 結論 24
3-2 噴墨式感測器 25
3-2-1 氣體感測原理 25
3-2-2 感測器噴印實驗 27
3-2-3 結果與討論 29
3-2-4 結論 34
3-3 金屬/有機傳導介面 34
第4章 噴墨整合感測器晶片 39
4-1 噴墨整合濕度感測晶片簡介 39
4-2 電路設計 39
4-3 晶片後製程 50
4-4 第一版晶片實作成果與討論 52
4-5 第二版晶片實作結果與討論 55
4-6 結論與未來發展 61
第5章 結論 65
附錄A 噴墨製程平台研製 67
A-1 噴墨系統整體架構 67
A-2 噴墨頭 69
A-3 墨料槽與氣壓控制系統 74
A-4 自動化噴墨控制程式 77
A-4-1 噴頭測試程式 78
A-4-2 定位程式 81
A-4-3 噴墨製程程式/圖形繪製程式 84
A-5 環境控制 87
A-6 未來改進方向 88
附錄B 噴墨製程步驟 89
附錄C 氣體感測器量測實驗步驟 95
C-1 濕度量測 96
C-2 其他氣體量測 98
C-3 有機氣體量測 99
參考文獻 101

[1]T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, et al., "Recent Progress in Organic Electronics:&;#8201; Materials, Devices, and Processes," Chemistry of Materials, vol. 16, pp. 4413-4422, 2004/11/01 2004.
[2]H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, et al., "A high-mobility electron-transporting polymer for printed transistors," Nature, vol. 457, pp. 679-686, 02/05/print 2009.
[3]K.-J. Baeg, D. Khim, D.-Y. Kim, S.-W. Jung, J. B. Koo, I.-K. You, et al., "High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors," Journal of Polymer Science Part B: Polymer Physics, vol. 49, pp. 62-67, 2011.
[4]G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. Van der Putten, et al., "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nature Materials, vol. 3, pp. 106-110, Feb 2004.
[5]Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, "Solution-processed small-molecule solar cells with 6.7% efficiency," Nat Mater, vol. 11, pp. 44-48, 01//print 2012.
[6]Y. Chuo, B. Omrane, C. Landrock, J. Aristizabal, D. Hohertz, S. V. Grayli, et al., "Powering the Future: Organic Solar Cells with Polymer Energy Storage," Design &; Test of Computers, IEEE, vol. 28, pp. 32-40, 2011.
[7]G. G. Malliaras, "Organic bioelectronics: A new era for organic electronics," Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1830, pp. 4286-4287, 9// 2013.
[8]White Paper: OE-A Roadmap for Organic and Printed Electronics, 5th ed.: Organic Electronics Association, 2013.
[9]D. Berman and J. Krim, "Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices," Progress in Surface Science, vol. 88, pp. 171-211, 5// 2013.
[10]V. Custodio, F. Herrera, G. Lopez, and J. Moreno, "A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems," Sensors, vol. 12, pp. 13907-13946, 2012.
[11]C. H. Lee, W. Y. Chuang, S. H. Lin, W. J. Wu, and C. T. Lin, "A Printable Humidity Sensing Material Based on Conductive Polymer and Nanoparticles Composites," Japanese Journal of Applied Physics, vol. 52, May 2013.
[12]C.-T. Lin, C.-H. Hsu, I.-R. Chen, C.-H. Lee, and W.-J. Wu, "Enhancement of carrier mobility in all-inkjet-printed organic thin-film transistors using a blend of poly(3-hexylthiophene) and carbon nanoparticles," Thin Solid Films, vol. 519, pp. 8008-8012, 9/1/ 2011.
[13]C. T. Lin, C. H. Hsu, C. H. Lee, and W. J. Wu, "Inkjet-printed organic field-effect transistor by using composite semiconductor material of carbon nanoparticles and poly(3-hexylthiophene)," Journal of Nanotechnology, 2011.
[14]C.-W. Huang, Y.-J. Huang, S.-S. Lu, and C.-T. Lin, "A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology," Sensors, vol. 12, pp. 11592-11600, 2012.
[15]林世惠, "噴墨式有機濕度感測元件之開發," 碩士論文, 國立台灣大學工學院工程科學及海洋工程研究所, 2012.
[16]劉淑白, "全噴墨有機半導體摻雜石墨烯之薄膜電晶體效能提升研究," 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 2011.
[17]李長鴻, "全噴墨鐵電材料有機記憶體元件之製作," 碩士論文, 國立臺灣大學電子工程學研究所, 2009.
[18]許峻豪, "軟性電子元件與噴墨技術之開發與應用," 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 2008.
[19]莊孟哲, "軟性電子元件及電路噴墨製程平台研製," 碩士論文, 國立臺灣大學工程科學及海洋工程學研究所, 2007.
[20]B. A. Warneke, M. D. Scott, B. S. Leibowitz, Z. Lixia, C. L. Bellew, J. A. Chediak, et al., "An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks," in Sensors, 2002. Proceedings of IEEE, 2002, pp. 1510-1515 vol.2.
[21]S. Bhansali, G. H. Chapman, E. G. Friedman, Y. Ismail, P. R. Mukund, D. Tebbe, et al., "3D heterogeneous sensor system on a chip for defense and security applications," SPIE Proceedings, vol. 5417, pp. 413-424, 2004.
[22]Z. Xiong and C. Liu, "The application of inkjet direct writing in solar cell fabrication: An overview," in Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference on, 2011, pp. 1-6.
[23]A. Teichler, R. Eckardt, S. Hoeppener, C. Friebe, J. Perelaer, A. Senes, et al., "Combinatorial Screening of Polymer: Fullerene Blends for Organic Solar Cells by Inkjet Printing," Advanced Energy Materials, vol. 1, pp. 105-114, 2011.
[24]C. W. Lee, O. Y. Kim, and J. Y. Lee, "Organic materials for organic electronic devices," Journal of Industrial and Engineering Chemistry, vol. 20, pp. 1198-1208, 7/25/ 2014.
[25]S. Mandal, G. Purohit, and M. Katiyar, "Inkjet Printed Organic Thin Film Transistors: Achievements and Challenges," Materials Science Forum, vol. 736, pp. 250-274, 2012.
[26]M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, et al., "An ultra-lightweight design for imperceptible plastic electronics," Nature, vol. 499, pp. 458-463, 07/25/print 2013.
[27]R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, et al., "Ultrathin conformal devices for precise and continuous thermal characterization of human skin," Nat Mater, vol. 12, pp. 938-944, 10//print 2013.
[28]M. V. Kulkarni, S. K. Apte, S. D. Naik, J. D. Ambekar, and B. B. Kale, "Ink-jet printed conducting polyaniline based flexible humidity sensor," Sensors and Actuators B: Chemical, vol. 178, pp. 140-143, 3/1/ 2013.
[29]H. Andersson, A. Manuilskiy, T. Unander, C. Lidenmark, S. Forsberg, and H.-E. Nilsson, "Inkjet Printed Silver Nanoparticle Humidity Sensor With Memory Effect on Paper," Sensors Journal, IEEE, vol. 12, pp. 1901-1905, 2012.
[30]V. K. Lee, D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, et al., "Creating perfused functional vascular channels using 3D bio-printing technology," Biomaterials, vol. 35, pp. 8092-8102, 9// 2014.
[31]A. Teichler, J. Perelaer, and U. S. Schubert, "Inkjet printing of organic electronics - comparison of deposition techniques and state-of-the-art developments," Journal of Materials Chemistry C, vol. 1, pp. 1910-1925, 2013.
[32]L. Xie, "Heterogeneous Integration of Silicon and Printed Electronics for Intelligente Sensing Devices," KTH Royal Institute of Technology, Stockholm, 2014.
[33]W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, "Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement," Journal of Micromechanics and Microengineering, vol. 23, p. 065008, 2013.
[34]K. Harri. (2007, June 29). Technologies, Innovations and New Business Opportunities in Printed Intelligence. Available: http://www.vtt.fi/proj/cpi/files/Kopola_plenary__PlasticElectronics.pdf
[35]D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, "Internet of things: Vision, applications and research challenges," Ad Hoc Networks, vol. 10, pp. 1497-1516, 9// 2012.
[36]G. Joshi, S. Nam, and S. Kim, "Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends," Sensors, vol. 13, pp. 11196-11228, 2013.
[37]S. Bhattacharya, S. Sridevi, and R. Pitchiah, "Indoor air quality monitoring using wireless sensor network," in Sensing Technology (ICST), 2012 Sixth International Conference on, 2012, pp. 422-427.
[38]A. D. Wilson and M. Baietto, "Advances in Electronic-Nose Technologies Developed for Biomedical Applications," Sensors, vol. 11, pp. 1105-1176, 2011.
[39]A. D. Wilson, "Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment," Procedia Technology, vol. 1, pp. 453-463, // 2012.
[40]S. W. Chiu, H. C. Wu, T. I. Chou, H. Chen, and K. T. Tang, "A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip," Anal Bioanal Chem, Jan 3 2014.
[41]R. Manginell, J. Bauer, M. Moorman, L. Sanchez, J. Anderson, J. Whiting, et al., "A Monolithically-Integrated μGC Chemical Sensor System," Sensors, vol. 11, pp. 6517-6532, 2011.
[42]V. Matko, "Next Generation AT-Cut Quartz Crystal Sensing Devices," Sensors, vol. 11, pp. 4474-4482, May 2011.
[43]V. Matko and D. Donlagic, "Sensor for high-air-humidity measurement," IEEE Transactions on Instrumentation and Measurement, vol. 45, pp. 561-563, Apr 1996.
[44]K. W. Bonfig, M. Denker, and U. Kuipers, "Das direkte digitale Messverfahren (DDM) als Grundlage einfacher und dennoch genauer und storsicherer Sensoren," Sensor, vol. 3, p. 6, 1988.
[45]C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, vol. 10, pp. 2088-2106, 2010.
[46]Sensemakers. (2013, May 4). AirQualityEgg. Available: http://airqualityegg.wikispaces.com/AirQualityEgg
[47]A. Pecora, L. Maiolo, E. Zampetti, S. Pantalei, A. Valletta, A. Minotti, et al., "Chemoresistive nanofibrous sensor array and read-out electronics on flexible substrate," in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, 2009, pp. 144-147.
[48]M. Li, Y.-T. Li, D.-W. Li, and Y.-T. Long, "Recent developments and applications of screen-printed electrodes in environmental assays—A review," Analytica Chimica Acta, vol. 734, pp. 31-44, 7/13/ 2012.
[49]B. Adhikari and S. Majumdar, "Polymers in sensor applications," Progress in Polymer Science, vol. 29, pp. 699-766, 2004.
[50]H. Bai and G. Shi, "Gas Sensors Based on Conducting Polymers," Sensors, vol. 7, pp. 267-307, 2007.
[51]M.-F. Lai, S.-W. Li, J.-Y. Shih, and K.-N. Chen, "Wafer-level three-dimensional integrated circuits (3D IC): Schemes and key technologies," Microelectronic Engineering, vol. 88, pp. 3282-3286, 11// 2011.
[52]J. Garcia-Guzman, J. W. Gardner, and M. Cole, "A duo-type smart gas sensor ASIC chip for use with resistive nanomaterials," Procedia Engineering, vol. 5, pp. 176-179, // 2010.
[53]C.-W. Huang, H.-T. Hsueh, Y.-J. Huang, H.-H. Liao, H.-H. Tsai, Y.-Z. Juang, et al., "A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV)," Sensors and Actuators B: Chemical, vol. 181, pp. 867-873, 5// 2013.
[54]J. W. Gardner, J. Garcia-Guzman, and M. Cole, "Smart ASIC chip for vapor detection based upon carbon black/polymer composite nanomaterials," SPIE Proceedings, vol. 5389, pp. 344-354, 2004.
[55]Y. Li, C. Vancura, D. Barrettino, M. Graf, C. Hagleitner, A. Kummer, et al., "Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes," Sensors and Actuators B: Chemical, vol. 126, pp. 431-440, 10/1/ 2007.
[56]O. Skorka and D. Joseph, "Design and Fabrication of Vertically-Integrated CMOS Image Sensors," Sensors, vol. 11, pp. 4512-4538, 2011.
[57]R. Schirhagl, "Bioapplications for Molecularly Imprinted Polymers," Analytical Chemistry, vol. 86, pp. 250-261, 2014/01/07 2013.
[58]F. Molina-Lopez, D. Briand, and N. F. de Rooij, "All additive inkjet printed humidity sensors on plastic substrate," Sensors and Actuators B: Chemical, vol. 166–167, pp. 212-222, 5/20/ 2012.
[59]J. H. Na, M. Kitamura, and Y. Arakawa, "Low-voltage-operating organic complementary circuits based on pentacene and C60 transistors," Thin Solid Films, vol. 517, pp. 2079-2082, 1/30/ 2009.
[60]C. Larsen, J. Wang, and L. Edman, "Complementary ring oscillator fabricated via direct laser-exposure and solution-processing of a single-layer organic film," Thin Solid Films, vol. 520, pp. 3009-3012, 2012.
[61]T. Minari, C. Liu, M. Kano, and K. Tsukagoshi, "Controlled Self-Assembly of Organic Semiconductors for Solution-Based Fabrication of Organic Field-Effect Transistors," Advanced Materials, vol. 24, pp. 299-306, 2012.
[62]T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, et al., "Solution-processed silicon films and transistors," Nature, vol. 440, pp. 783-786, Apr 6 2006.
[63]H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, et al., "A high-mobility electron-transporting polymer for printed transistors," Nature, vol. 457, pp. 679-686, 2009.
[64]A. De La Fuente Vornbrock, D. Sung, H. Kang, R. Kitsomboonloha, and V. Subramanian, "Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors," Organic Electronics: physics, materials, applications, vol. 11, pp. 2037-2044, 2010.
[65]L. Basirico, P. Cosseddu, B. Fraboni, and A. Bonfiglio, "Inkjet printing of transparent, flexible, organic transistors," Thin Solid Films, vol. 520, pp. 1291-1294, 2011.
[66]K. J. Baeg, D. Khim, D. Y. Kim, S. W. Jung, J. B. Koo, I. K. You, et al., "High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors," Journal of Polymer Science, Part B: Polymer Physics, vol. 49, pp. 62-67, 2011.
[67]C. A. Lee, S. H. Jin, K. D. Jung, J. D. Lee, and B. G. Park, "Full-swing pentacene organic inverter with enhancement-mode driver and depletion-mode load," Solid-State Electronics, vol. 50, pp. 1216-1218, 2006.
[68]J. B. Koo, J. W. Lim, S. H. Kim, S. J. Yun, C. H. Ku, S. C. Lim, et al., "Pentacene thin-film transistors and inverters with plasma-enhanced atomic-layer-deposited Al2O3 gate dielectric," Thin Solid Films, vol. 515, pp. 3132-3137, 2007.
[69]Y. Oh, J. Kim, Y. J. Yoon, H. Kim, H. G. Yoon, S.-N. Lee, et al., "Inkjet printing of Al2O3 dots, lines, and films: From uniform dots to uniform films," Current Applied Physics, vol. 11, pp. S359-S363, 5// 2011.
[70]K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang, et al., "Flexible high mobility pentacene transistor with high-k/low-k double polymer dielectric layer operating at -5 V," Organic Electronics: physics, materials, applications, vol. 10, pp. 194-198, 2009.
[71]J. S. Shi, M. B. Chan-Park, and C. M. Li, Org. Electron., vol. 10, p. 396, 2009.
[72]H. Sirringhaus, "Device physics of Solution-processed organic field-effect transistors," Advanced Materials, vol. 17, pp. 2411-2425, Oct 17 2005.
[73]C. I. Huang, H. A. Chin, Y. R. Wu, I. C. Cheng, J. Z. Chen, K. C. Chiu, et al., "Mobility enhancement of polycrystalline MgZnO/ZnO thin film layers ]with modulation doping and polarization effects," IEEE Transactions on Electron Devices, vol. 57, pp. 696-703, 2010.
[74]S. H. Lim, A. C. Rastogi, and S. B. Desu, "Electrical properties of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random access memory application," Journal of Applied Physics, vol. 96, p. 5673, 2004.
[75]A. N. Sokolov, B. C. K. Tee, C. J. Bettinger, J. B. H. Tok, and Z. N. Bao, "Chemical and Engineering Approaches To Enable Organic Field-Effect Transistors for Electronic Skin Applications," Accounts of Chemical Research, vol. 45, pp. 361-371, Mar 2012.
[76]M. Kimura, R. Sakai, S. Sato, T. Fukawa, T. Ikehara, R. Maeda, et al., "Sensing of Vaporous Organic Compounds by TiO2 Porous Films Covered with Polythiophene Layers," Advanced Functional Materials, vol. 22, pp. 469-476, Feb 8 2012.
[77]X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. D. Van der Gon, F. Louwet, et al., "Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study," Journal of Polymer Science Part B-Polymer Physics, vol. 41, pp. 2561-2583, Nov 1 2003.
[78]J. S. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly (3,4-ethylenedioxythiophene)/poly (styrene sulfonate) films," Advanced Functional Materials, vol. 15, pp. 290-296, Feb 2005.
[79]R. Memarzadeh, F. Panahi, S. Javadpour, K.-N. Ali, H.-B. Noh, and Y.-B. Shim, "The Interaction of CO to the Co(salen) Complex in to PEDOT:PSS Film and Sensor Application," Bulletin of the Korean Chemical Society, vol. 33, p. 5, 2012.
[80]I. Cruz-Cruz, M. Reyes-Reyes, M. A. Aguilar-Frutis, A. G. Rodriguez, and R. Lopez-Sandoval, "Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films," Synthetic Metals, vol. 160, pp. 1501-1506, 7// 2010.
[81]J. Ouyang, "“Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices," Displays, vol. 34, pp. 423-436, 12// 2013.
[82]Rajesh, T. Ahuja, and D. Kumar, "Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications," Sensors and Actuators B-Chemical, vol. 136, pp. 275-286, Feb 2 2009.
[83]J. Wang, Q. H. Lin, R. Q. Zhou, and B. K. Xu, "Humidity sensors based on composite material of nano-BaTiO3 and polymer RMX," Sensors and Actuators B-Chemical, vol. 81, pp. 248-253, Jan 5 2002.
[84]S.-W. Chiu and K.-T. Tang, "Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review," Sensors, vol. 13, pp. 14214-14247, 2013.
[85]T. Tonosaki, O. Takahiro, S. Hiroshi, I. Kazutoshi, and O. Kotaro, "Highly Sensitive CO2 Sensor with Polymer Composites Operating at Room Temperature," Analytical Sciences, vol. 17, pp. 249-252, 2001.
[86]Y. Nobusa, Y. Takagi, S. Gocho, S. Matsuzaki, K. Yanagi, and T. Takenobu, "Fine Patterning of Inkjet-Printed Single-Walled Carbon-Nanotube Thin-Film Transistors," Japanese Journal of Applied Physics, vol. 51, p. 06FD15, 2012.
[87]H. Okimoto, T. Takenobu, K. Yanagi, H. Shimotani, Y. Miyata, H. Kataura, et al., "Low-Voltage Operation of Ink-Jet-Printed Single-Walled Carbon Nanotube Thin Film Transistors," Japanese Journal of Applied Physics, vol. 49, 2010.
[88]N. B. Cho, T. H. Lim, Y. M. Jeon, and M. S. Gong, "Humidity sensors fabricated with photo-curable electrolyte inks using an ink-jet printing technique and their properties," Sensors and Actuators B-Chemical, vol. 130, pp. 594-598, Mar 28 2008.
[89]C. W. Lee, D. H. Nam, Y. S. Han, K. C. Chung, and M. S. Gong, "Humidity sensors fabricated with polyelectrolyte membrane using an ink jet printing technique and their electrical properties," Sensors and Actuators B-Chemical, vol. 109, pp. 334-340, Sep 14 2005.
[90]Y. F. Qiu and S. H. Yang, "Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity," Nanotechnology, vol. 19, Jul 2 2008.
[91]Sensirion. (2011). Datasheet SHT1x. Available: http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf
[92]P. G. Su and L. N. Huang, "Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films," Sensors and Actuators B-Chemical, vol. 123, pp. 501-507, Apr 10 2007.
[93]P. G. Su and S. C. Huang, "Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride," Sensors and Actuators B-Chemical, vol. 105, pp. 170-175, Mar 28 2005.
[94]P. G. Su and W. Y. Tsai, "Humidity sensing and electrical properties of a composite nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate)," Sensors and Actuators B-Chemical, vol. 100, pp. 417-422, May 15 2004.
[95]R. Cueto and W. A. Pryor, "Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy," Vibrational Spectroscopy, vol. 7, pp. 97-111, 5// 1994.
[96]J. Li, J. C. Liu, C. J. Gao, J. L. Zhang, and H. B. Sun, "Influence of MWCNTs Doping on the Structure and Properties of PEDOT:PSS Films," International Journal of Photoenergy, 2009.
[97]W. P. Tai and J. H. Oh, "Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process," Journal of Materials Science-Materials in Electronics, vol. 13, pp. 391-394, Jul 2002.
[98]S. Park, S. J. Tark, and D. Kim, "Effect of sorbitol doping in PEDOT:PSS on the electrical performance of organic photovoltaic devices," Current Applied Physics, vol. 11, pp. 1299-1301, 11// 2011.
[99]M. Xue, W. Wang, F. Wang, J. Ou, C. Li, and W. Li, "Understanding of the correlation between work function and surface morphology of metals and alloys," Journal of Alloys and Compounds, vol. 577, pp. 1-5, 11/15/ 2013.
[100]A. Kiejna and K. F. Wojciechowski, "Work function of metals: Relation between theory and experiment," Progress in Surface Science, vol. 11, pp. 293-338, // 1981.
[101]K. Kwang Sun, H. Kwang Jun, and J. Kim, "Polymer-Based Flexible Schottky Diode Made With Pentacene-PEDOT:PSS," IEEE Transactions on Nanotechnology, vol. 8, pp. 627-630, 2009.
[102]W. Kim, J. Kyu Kim, Y. Lim, I. Park, Y. Suk Choi, and J. Hyeok Park, "Tungsten oxide/PEDOT:PSS hybrid cascade hole extraction layer for polymer solar cells with enhanced long-term stability and power conversion efficiency," Solar Energy Materials and Solar Cells, vol. 122, pp. 24-30, 3// 2014.
[103]S.-W. Rhee and D.-J. Yun, "Metal-semiconductor contact in organic thin film transistors," Journal of Materials Chemistry, vol. 18, pp. 5437-5444, 2008.
[104]T. Bakhishev and V. Subramanian, "Investigation of Gold Nanoparticle Inks for Low-Temperature Lead-Free Packaging Technology," Journal of Electronic Materials, vol. 38, pp. 2720-2725, 2009/12/01 2009.
[105]Y. Okinaka and M. Kato, "Electroless Deposition of Gold," in Modern Electroplating, ed: John Wiley &; Sons, Inc., 2010, pp. 483-498.
[106]G. Guo, A. Bermak, P. C. H. Chan, and G. Z. Yan, "A monolithic integrated 4 x 4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits," Solid-State Electronics, vol. 51, pp. 69-76, Jan 2007.
[107]A. Lombardi, M. Grassi, P. Malcovati, S. Capone, L. Francioso, P. Siciliano, et al., "A CMOS integrated interface circuit for metal-oxide gas sensors," Sensors and Actuators B: Chemical, vol. 142, pp. 82-89, 2009.
[108]M. Pramod, "Energy efficient integrated gas sensor system with post CMOS functionalization," in 2011 13th International Symposium on Integrated Circuits (ISIC), 2011, pp. 130-135.
[109]J. H. L. Lu, M. Inerowicz, S. Joo, J. K. Kwon, and B. Jung, "A Low-Power, Wide-Dynamic-Range Semi-Digital Universal Sensor Readout Circuit Using Pulsewidth Modulation," IEEE Sensors Journal, vol. 11, pp. 1134-1144, May 2011.
[110]H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I. L. Wang, Y.-C. Lin, R.-L. Wang, et al., "Multiple type biosensors fabricated using the CMOS BioMEMS platform," Sensors and Actuators B: Chemical, vol. 144, pp. 407-412, 2/17/ 2010.
[111]M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, "Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs," Organic Electronics, vol. 11, pp. 854-859, 5// 2010.
[112]J. Z. Wang, J. F. Chang, and H. Sirringhaus, "Contact effects of solution-processed polymer electrodes: Limited conductivity and interfacial doping," Applied Physics Letters, vol. 87, pp. -, 2005.
[113]C.-Y. Lin, J.-G. Chen, C.-W. Hu, J. J. Tunney, and K.-C. Ho, "Using a PEDOT:PSS modified electrode for detecting nitric oxide gas," Sensors and Actuators B: Chemical, vol. 140, pp. 402-406, 7/16/ 2009.
[114]D. Yaping, C. Yanyan, E. M. Tom, E. Stephane, and A. T. C. Johnson, "Gas sensing properties of single conducting polymer nanowires and the effect of temperature," Nanotechnology, vol. 20, p. 434014, 2009.
[115]M. F. Mabrook, C. Pearson, and M. C. Petty, "Inkjet-printed polypyrrole thin films for vapour sensing," Sensors and Actuators B: Chemical, vol. 115, pp. 547-551, 5/23/ 2006.
[116]J.-H. Cho, J.-B. Yu, J.-S. Kim, S.-O. Sohn, D.-D. Lee, and J.-S. Huh, "Sensing behaviors of polypyrrole sensor under humidity condition," Sensors and Actuators B: Chemical, vol. 108, pp. 389-392, 7/22/ 2005.
[117]J. Oliver, M. Lehne, K. Vummidi, A. Bell, and S. Raman, "A low power CMOS sigma-delta readout circuit for heterogeneously integrated chemoresistive micro-/nano- sensor arrays," in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, 2008, pp. 2098-2101.
[118]K.-T. Tang, S.-W. Chiu, M.-F. Chang, C.-C. Hsieh, and J.-M. Shyu, "A Low-Power Electronic Nose Signal-Processing Chip for a Portable Artificial Olfaction System," Biomedical Circuits and Systems, IEEE Transactions on, vol. 5, pp. 380-390, 2011.
[119]P. Murali, K. Ranjit, N. Bhat, G. Banerjee, B. Amrutur, K. N. Bhat, et al., "A CMOS Gas Sensor Array Platform With Fourier Transform Based Impedance Spectroscopy," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, pp. 2507-2517, 2012.
[120]F. Molina-Lopez, D. Briand, and N. F. de Rooij, "Large arrays of inkjet-printed MEMS microbridges on foil," in Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on, 2014, pp. 506-509.
[121]MicroFab. (2013, Nov. 9). Complete Systems. Available: http://www.microfab.com/index.php?option=com_content&;view=category&;layout=blog&;id=9&;Itemid=7
[122]Fujifilm. (2012, Nov. 9). Dimatix Materials Printer DMP-5000. Available: http://www.fujifilmusa.com/shared/bin/PDS00087-DMP5000.pdf
[123]m. T. GmbH. (2012, Nov. 9). Autodrop Platform. Available: http://www.microdrop.de/autodrop-platform-69.html
[124]MicroFab. (2013, Nov 9). Microfab Equipment Selection Guide. Available: http://www.microfab.com/index.php?option=com_content&;view=article&;id=26&;Itemid=144
[125]H. P. Le, "Progress and Trends in Ink-jet Printing Technology," Journal of Imaging Science and Technology, vol. 42, p. 14, 1998.
[126]M. M. J. Donald J. Hayes, J. Lester Matthews, "Method and apparatus for improved laser surgery," US Patent 5092864, Mar 3, 1992.
[127]MicroFab. (2013, Nov. 9). MicroJet Integration Guide. Available: http://www.microfab.com/images/pdfs/integrationguide_ver5.pdf
[128]MicroFab. (2012, Nov. 9). Ink-Jet Microdispensing Basic Set-up. Available: http://www.microfab.com/images/pdfs/manuals/Ink-JetMicrodispensingSet-up_UserGuide_2012.pdf
[129]MicroFab. (2013, Nov. 9). MicroJet Cleaning Guide. Available: http://www.microfab.com/index.php?option=com_content&;view=article&;id=28&;Itemid=39

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔