[1]T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, et al., "Recent Progress in Organic Electronics:&;#8201; Materials, Devices, and Processes," Chemistry of Materials, vol. 16, pp. 4413-4422, 2004/11/01 2004.
[2]H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, et al., "A high-mobility electron-transporting polymer for printed transistors," Nature, vol. 457, pp. 679-686, 02/05/print 2009.
[3]K.-J. Baeg, D. Khim, D.-Y. Kim, S.-W. Jung, J. B. Koo, I.-K. You, et al., "High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors," Journal of Polymer Science Part B: Polymer Physics, vol. 49, pp. 62-67, 2011.
[4]G. H. Gelinck, H. E. A. Huitema, E. Van Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. Van der Putten, et al., "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nature Materials, vol. 3, pp. 106-110, Feb 2004.
[5]Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, "Solution-processed small-molecule solar cells with 6.7% efficiency," Nat Mater, vol. 11, pp. 44-48, 01//print 2012.
[6]Y. Chuo, B. Omrane, C. Landrock, J. Aristizabal, D. Hohertz, S. V. Grayli, et al., "Powering the Future: Organic Solar Cells with Polymer Energy Storage," Design &; Test of Computers, IEEE, vol. 28, pp. 32-40, 2011.
[7]G. G. Malliaras, "Organic bioelectronics: A new era for organic electronics," Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1830, pp. 4286-4287, 9// 2013.
[8]White Paper: OE-A Roadmap for Organic and Printed Electronics, 5th ed.: Organic Electronics Association, 2013.
[9]D. Berman and J. Krim, "Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices," Progress in Surface Science, vol. 88, pp. 171-211, 5// 2013.
[10]V. Custodio, F. Herrera, G. Lopez, and J. Moreno, "A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems," Sensors, vol. 12, pp. 13907-13946, 2012.
[11]C. H. Lee, W. Y. Chuang, S. H. Lin, W. J. Wu, and C. T. Lin, "A Printable Humidity Sensing Material Based on Conductive Polymer and Nanoparticles Composites," Japanese Journal of Applied Physics, vol. 52, May 2013.
[12]C.-T. Lin, C.-H. Hsu, I.-R. Chen, C.-H. Lee, and W.-J. Wu, "Enhancement of carrier mobility in all-inkjet-printed organic thin-film transistors using a blend of poly(3-hexylthiophene) and carbon nanoparticles," Thin Solid Films, vol. 519, pp. 8008-8012, 9/1/ 2011.
[13]C. T. Lin, C. H. Hsu, C. H. Lee, and W. J. Wu, "Inkjet-printed organic field-effect transistor by using composite semiconductor material of carbon nanoparticles and poly(3-hexylthiophene)," Journal of Nanotechnology, 2011.
[14]C.-W. Huang, Y.-J. Huang, S.-S. Lu, and C.-T. Lin, "A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology," Sensors, vol. 12, pp. 11592-11600, 2012.
[15]林世惠, "噴墨式有機濕度感測元件之開發," 碩士論文, 國立台灣大學工學院工程科學及海洋工程研究所, 2012.[16]劉淑白, "全噴墨有機半導體摻雜石墨烯之薄膜電晶體效能提升研究," 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 2011.[17]李長鴻, "全噴墨鐵電材料有機記憶體元件之製作," 碩士論文, 國立臺灣大學電子工程學研究所, 2009.[18]許峻豪, "軟性電子元件與噴墨技術之開發與應用," 碩士論文, 國立臺灣大學工程科學及海洋工程研究所, 2008.[19]莊孟哲, "軟性電子元件及電路噴墨製程平台研製," 碩士論文, 國立臺灣大學工程科學及海洋工程學研究所, 2007.[20]B. A. Warneke, M. D. Scott, B. S. Leibowitz, Z. Lixia, C. L. Bellew, J. A. Chediak, et al., "An autonomous 16 mm3 solar-powered node for distributed wireless sensor networks," in Sensors, 2002. Proceedings of IEEE, 2002, pp. 1510-1515 vol.2.
[21]S. Bhansali, G. H. Chapman, E. G. Friedman, Y. Ismail, P. R. Mukund, D. Tebbe, et al., "3D heterogeneous sensor system on a chip for defense and security applications," SPIE Proceedings, vol. 5417, pp. 413-424, 2004.
[22]Z. Xiong and C. Liu, "The application of inkjet direct writing in solar cell fabrication: An overview," in Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference on, 2011, pp. 1-6.
[23]A. Teichler, R. Eckardt, S. Hoeppener, C. Friebe, J. Perelaer, A. Senes, et al., "Combinatorial Screening of Polymer: Fullerene Blends for Organic Solar Cells by Inkjet Printing," Advanced Energy Materials, vol. 1, pp. 105-114, 2011.
[24]C. W. Lee, O. Y. Kim, and J. Y. Lee, "Organic materials for organic electronic devices," Journal of Industrial and Engineering Chemistry, vol. 20, pp. 1198-1208, 7/25/ 2014.
[25]S. Mandal, G. Purohit, and M. Katiyar, "Inkjet Printed Organic Thin Film Transistors: Achievements and Challenges," Materials Science Forum, vol. 736, pp. 250-274, 2012.
[26]M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, et al., "An ultra-lightweight design for imperceptible plastic electronics," Nature, vol. 499, pp. 458-463, 07/25/print 2013.
[27]R. C. Webb, A. P. Bonifas, A. Behnaz, Y. Zhang, K. J. Yu, H. Cheng, et al., "Ultrathin conformal devices for precise and continuous thermal characterization of human skin," Nat Mater, vol. 12, pp. 938-944, 10//print 2013.
[28]M. V. Kulkarni, S. K. Apte, S. D. Naik, J. D. Ambekar, and B. B. Kale, "Ink-jet printed conducting polyaniline based flexible humidity sensor," Sensors and Actuators B: Chemical, vol. 178, pp. 140-143, 3/1/ 2013.
[29]H. Andersson, A. Manuilskiy, T. Unander, C. Lidenmark, S. Forsberg, and H.-E. Nilsson, "Inkjet Printed Silver Nanoparticle Humidity Sensor With Memory Effect on Paper," Sensors Journal, IEEE, vol. 12, pp. 1901-1905, 2012.
[30]V. K. Lee, D. Y. Kim, H. Ngo, Y. Lee, L. Seo, S.-S. Yoo, et al., "Creating perfused functional vascular channels using 3D bio-printing technology," Biomaterials, vol. 35, pp. 8092-8102, 9// 2014.
[31]A. Teichler, J. Perelaer, and U. S. Schubert, "Inkjet printing of organic electronics - comparison of deposition techniques and state-of-the-art developments," Journal of Materials Chemistry C, vol. 1, pp. 1910-1925, 2013.
[32]L. Xie, "Heterogeneous Integration of Silicon and Printed Electronics for Intelligente Sensing Devices," KTH Royal Institute of Technology, Stockholm, 2014.
[33]W.-C. Chen, T.-J. Wu, W.-J. Wu, and G.-D. J. Su, "Fabrication of inkjet-printed SU-8 photoresist microlenses using hydrophilic confinement," Journal of Micromechanics and Microengineering, vol. 23, p. 065008, 2013.
[34]K. Harri. (2007, June 29). Technologies, Innovations and New Business Opportunities in Printed Intelligence. Available: http://www.vtt.fi/proj/cpi/files/Kopola_plenary__PlasticElectronics.pdf
[35]D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, "Internet of things: Vision, applications and research challenges," Ad Hoc Networks, vol. 10, pp. 1497-1516, 9// 2012.
[36]G. Joshi, S. Nam, and S. Kim, "Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends," Sensors, vol. 13, pp. 11196-11228, 2013.
[37]S. Bhattacharya, S. Sridevi, and R. Pitchiah, "Indoor air quality monitoring using wireless sensor network," in Sensing Technology (ICST), 2012 Sixth International Conference on, 2012, pp. 422-427.
[38]A. D. Wilson and M. Baietto, "Advances in Electronic-Nose Technologies Developed for Biomedical Applications," Sensors, vol. 11, pp. 1105-1176, 2011.
[39]A. D. Wilson, "Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment," Procedia Technology, vol. 1, pp. 453-463, // 2012.
[40]S. W. Chiu, H. C. Wu, T. I. Chou, H. Chen, and K. T. Tang, "A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip," Anal Bioanal Chem, Jan 3 2014.
[41]R. Manginell, J. Bauer, M. Moorman, L. Sanchez, J. Anderson, J. Whiting, et al., "A Monolithically-Integrated μGC Chemical Sensor System," Sensors, vol. 11, pp. 6517-6532, 2011.
[42]V. Matko, "Next Generation AT-Cut Quartz Crystal Sensing Devices," Sensors, vol. 11, pp. 4474-4482, May 2011.
[43]V. Matko and D. Donlagic, "Sensor for high-air-humidity measurement," IEEE Transactions on Instrumentation and Measurement, vol. 45, pp. 561-563, Apr 1996.
[44]K. W. Bonfig, M. Denker, and U. Kuipers, "Das direkte digitale Messverfahren (DDM) als Grundlage einfacher und dennoch genauer und storsicherer Sensoren," Sensor, vol. 3, p. 6, 1988.
[45]C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, vol. 10, pp. 2088-2106, 2010.
[46]Sensemakers. (2013, May 4). AirQualityEgg. Available: http://airqualityegg.wikispaces.com/AirQualityEgg
[47]A. Pecora, L. Maiolo, E. Zampetti, S. Pantalei, A. Valletta, A. Minotti, et al., "Chemoresistive nanofibrous sensor array and read-out electronics on flexible substrate," in Solid-State Sensors, Actuators and Microsystems Conference, 2009. TRANSDUCERS 2009. International, 2009, pp. 144-147.
[48]M. Li, Y.-T. Li, D.-W. Li, and Y.-T. Long, "Recent developments and applications of screen-printed electrodes in environmental assays—A review," Analytica Chimica Acta, vol. 734, pp. 31-44, 7/13/ 2012.
[49]B. Adhikari and S. Majumdar, "Polymers in sensor applications," Progress in Polymer Science, vol. 29, pp. 699-766, 2004.
[50]H. Bai and G. Shi, "Gas Sensors Based on Conducting Polymers," Sensors, vol. 7, pp. 267-307, 2007.
[51]M.-F. Lai, S.-W. Li, J.-Y. Shih, and K.-N. Chen, "Wafer-level three-dimensional integrated circuits (3D IC): Schemes and key technologies," Microelectronic Engineering, vol. 88, pp. 3282-3286, 11// 2011.
[52]J. Garcia-Guzman, J. W. Gardner, and M. Cole, "A duo-type smart gas sensor ASIC chip for use with resistive nanomaterials," Procedia Engineering, vol. 5, pp. 176-179, // 2010.
[53]C.-W. Huang, H.-T. Hsueh, Y.-J. Huang, H.-H. Liao, H.-H. Tsai, Y.-Z. Juang, et al., "A fully integrated wireless CMOS microcantilever lab chip for detection of DNA from Hepatitis B virus (HBV)," Sensors and Actuators B: Chemical, vol. 181, pp. 867-873, 5// 2013.
[54]J. W. Gardner, J. Garcia-Guzman, and M. Cole, "Smart ASIC chip for vapor detection based upon carbon black/polymer composite nanomaterials," SPIE Proceedings, vol. 5389, pp. 344-354, 2004.
[55]Y. Li, C. Vancura, D. Barrettino, M. Graf, C. Hagleitner, A. Kummer, et al., "Monolithic CMOS multi-transducer gas sensor microsystem for organic and inorganic analytes," Sensors and Actuators B: Chemical, vol. 126, pp. 431-440, 10/1/ 2007.
[56]O. Skorka and D. Joseph, "Design and Fabrication of Vertically-Integrated CMOS Image Sensors," Sensors, vol. 11, pp. 4512-4538, 2011.
[57]R. Schirhagl, "Bioapplications for Molecularly Imprinted Polymers," Analytical Chemistry, vol. 86, pp. 250-261, 2014/01/07 2013.
[58]F. Molina-Lopez, D. Briand, and N. F. de Rooij, "All additive inkjet printed humidity sensors on plastic substrate," Sensors and Actuators B: Chemical, vol. 166–167, pp. 212-222, 5/20/ 2012.
[59]J. H. Na, M. Kitamura, and Y. Arakawa, "Low-voltage-operating organic complementary circuits based on pentacene and C60 transistors," Thin Solid Films, vol. 517, pp. 2079-2082, 1/30/ 2009.
[60]C. Larsen, J. Wang, and L. Edman, "Complementary ring oscillator fabricated via direct laser-exposure and solution-processing of a single-layer organic film," Thin Solid Films, vol. 520, pp. 3009-3012, 2012.
[61]T. Minari, C. Liu, M. Kano, and K. Tsukagoshi, "Controlled Self-Assembly of Organic Semiconductors for Solution-Based Fabrication of Organic Field-Effect Transistors," Advanced Materials, vol. 24, pp. 299-306, 2012.
[62]T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, et al., "Solution-processed silicon films and transistors," Nature, vol. 440, pp. 783-786, Apr 6 2006.
[63]H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, et al., "A high-mobility electron-transporting polymer for printed transistors," Nature, vol. 457, pp. 679-686, 2009.
[64]A. De La Fuente Vornbrock, D. Sung, H. Kang, R. Kitsomboonloha, and V. Subramanian, "Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors," Organic Electronics: physics, materials, applications, vol. 11, pp. 2037-2044, 2010.
[65]L. Basirico, P. Cosseddu, B. Fraboni, and A. Bonfiglio, "Inkjet printing of transparent, flexible, organic transistors," Thin Solid Films, vol. 520, pp. 1291-1294, 2011.
[66]K. J. Baeg, D. Khim, D. Y. Kim, S. W. Jung, J. B. Koo, I. K. You, et al., "High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors," Journal of Polymer Science, Part B: Polymer Physics, vol. 49, pp. 62-67, 2011.
[67]C. A. Lee, S. H. Jin, K. D. Jung, J. D. Lee, and B. G. Park, "Full-swing pentacene organic inverter with enhancement-mode driver and depletion-mode load," Solid-State Electronics, vol. 50, pp. 1216-1218, 2006.
[68]J. B. Koo, J. W. Lim, S. H. Kim, S. J. Yun, C. H. Ku, S. C. Lim, et al., "Pentacene thin-film transistors and inverters with plasma-enhanced atomic-layer-deposited Al2O3 gate dielectric," Thin Solid Films, vol. 515, pp. 3132-3137, 2007.
[69]Y. Oh, J. Kim, Y. J. Yoon, H. Kim, H. G. Yoon, S.-N. Lee, et al., "Inkjet printing of Al2O3 dots, lines, and films: From uniform dots to uniform films," Current Applied Physics, vol. 11, pp. S359-S363, 5// 2011.
[70]K. H. Lee, K. Lee, M. S. Oh, J. M. Choi, S. Im, S. Jang, et al., "Flexible high mobility pentacene transistor with high-k/low-k double polymer dielectric layer operating at -5 V," Organic Electronics: physics, materials, applications, vol. 10, pp. 194-198, 2009.
[71]J. S. Shi, M. B. Chan-Park, and C. M. Li, Org. Electron., vol. 10, p. 396, 2009.
[72]H. Sirringhaus, "Device physics of Solution-processed organic field-effect transistors," Advanced Materials, vol. 17, pp. 2411-2425, Oct 17 2005.
[73]C. I. Huang, H. A. Chin, Y. R. Wu, I. C. Cheng, J. Z. Chen, K. C. Chiu, et al., "Mobility enhancement of polycrystalline MgZnO/ZnO thin film layers ]with modulation doping and polarization effects," IEEE Transactions on Electron Devices, vol. 57, pp. 696-703, 2010.
[74]S. H. Lim, A. C. Rastogi, and S. B. Desu, "Electrical properties of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random access memory application," Journal of Applied Physics, vol. 96, p. 5673, 2004.
[75]A. N. Sokolov, B. C. K. Tee, C. J. Bettinger, J. B. H. Tok, and Z. N. Bao, "Chemical and Engineering Approaches To Enable Organic Field-Effect Transistors for Electronic Skin Applications," Accounts of Chemical Research, vol. 45, pp. 361-371, Mar 2012.
[76]M. Kimura, R. Sakai, S. Sato, T. Fukawa, T. Ikehara, R. Maeda, et al., "Sensing of Vaporous Organic Compounds by TiO2 Porous Films Covered with Polythiophene Layers," Advanced Functional Materials, vol. 22, pp. 469-476, Feb 8 2012.
[77]X. Crispin, S. Marciniak, W. Osikowicz, G. Zotti, A. W. D. Van der Gon, F. Louwet, et al., "Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study," Journal of Polymer Science Part B-Polymer Physics, vol. 41, pp. 2561-2583, Nov 1 2003.
[78]J. S. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, "Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly (3,4-ethylenedioxythiophene)/poly (styrene sulfonate) films," Advanced Functional Materials, vol. 15, pp. 290-296, Feb 2005.
[79]R. Memarzadeh, F. Panahi, S. Javadpour, K.-N. Ali, H.-B. Noh, and Y.-B. Shim, "The Interaction of CO to the Co(salen) Complex in to PEDOT:PSS Film and Sensor Application," Bulletin of the Korean Chemical Society, vol. 33, p. 5, 2012.
[80]I. Cruz-Cruz, M. Reyes-Reyes, M. A. Aguilar-Frutis, A. G. Rodriguez, and R. Lopez-Sandoval, "Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films," Synthetic Metals, vol. 160, pp. 1501-1506, 7// 2010.
[81]J. Ouyang, "“Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices," Displays, vol. 34, pp. 423-436, 12// 2013.
[82]Rajesh, T. Ahuja, and D. Kumar, "Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications," Sensors and Actuators B-Chemical, vol. 136, pp. 275-286, Feb 2 2009.
[83]J. Wang, Q. H. Lin, R. Q. Zhou, and B. K. Xu, "Humidity sensors based on composite material of nano-BaTiO3 and polymer RMX," Sensors and Actuators B-Chemical, vol. 81, pp. 248-253, Jan 5 2002.
[84]S.-W. Chiu and K.-T. Tang, "Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review," Sensors, vol. 13, pp. 14214-14247, 2013.
[85]T. Tonosaki, O. Takahiro, S. Hiroshi, I. Kazutoshi, and O. Kotaro, "Highly Sensitive CO2 Sensor with Polymer Composites Operating at Room Temperature," Analytical Sciences, vol. 17, pp. 249-252, 2001.
[86]Y. Nobusa, Y. Takagi, S. Gocho, S. Matsuzaki, K. Yanagi, and T. Takenobu, "Fine Patterning of Inkjet-Printed Single-Walled Carbon-Nanotube Thin-Film Transistors," Japanese Journal of Applied Physics, vol. 51, p. 06FD15, 2012.
[87]H. Okimoto, T. Takenobu, K. Yanagi, H. Shimotani, Y. Miyata, H. Kataura, et al., "Low-Voltage Operation of Ink-Jet-Printed Single-Walled Carbon Nanotube Thin Film Transistors," Japanese Journal of Applied Physics, vol. 49, 2010.
[88]N. B. Cho, T. H. Lim, Y. M. Jeon, and M. S. Gong, "Humidity sensors fabricated with photo-curable electrolyte inks using an ink-jet printing technique and their properties," Sensors and Actuators B-Chemical, vol. 130, pp. 594-598, Mar 28 2008.
[89]C. W. Lee, D. H. Nam, Y. S. Han, K. C. Chung, and M. S. Gong, "Humidity sensors fabricated with polyelectrolyte membrane using an ink jet printing technique and their electrical properties," Sensors and Actuators B-Chemical, vol. 109, pp. 334-340, Sep 14 2005.
[90]Y. F. Qiu and S. H. Yang, "Kirkendall approach to the fabrication of ultra-thin ZnO nanotubes with high resistive sensitivity to humidity," Nanotechnology, vol. 19, Jul 2 2008.
[91]Sensirion. (2011). Datasheet SHT1x. Available: http://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity/Sensirion_Humidity_SHT1x_Datasheet_V5.pdf
[92]P. G. Su and L. N. Huang, "Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films," Sensors and Actuators B-Chemical, vol. 123, pp. 501-507, Apr 10 2007.
[93]P. G. Su and S. C. Huang, "Humidity sensing and electrical properties of a composite material of SiO2 and poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride," Sensors and Actuators B-Chemical, vol. 105, pp. 170-175, Mar 28 2005.
[94]P. G. Su and W. Y. Tsai, "Humidity sensing and electrical properties of a composite nano-sized SiO2 and poly(2-acrylamido-2-methylpropane sulfonate)," Sensors and Actuators B-Chemical, vol. 100, pp. 417-422, May 15 2004.
[95]R. Cueto and W. A. Pryor, "Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by Fourier transform infrared spectroscopy," Vibrational Spectroscopy, vol. 7, pp. 97-111, 5// 1994.
[96]J. Li, J. C. Liu, C. J. Gao, J. L. Zhang, and H. B. Sun, "Influence of MWCNTs Doping on the Structure and Properties of PEDOT:PSS Films," International Journal of Photoenergy, 2009.
[97]W. P. Tai and J. H. Oh, "Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process," Journal of Materials Science-Materials in Electronics, vol. 13, pp. 391-394, Jul 2002.
[98]S. Park, S. J. Tark, and D. Kim, "Effect of sorbitol doping in PEDOT:PSS on the electrical performance of organic photovoltaic devices," Current Applied Physics, vol. 11, pp. 1299-1301, 11// 2011.
[99]M. Xue, W. Wang, F. Wang, J. Ou, C. Li, and W. Li, "Understanding of the correlation between work function and surface morphology of metals and alloys," Journal of Alloys and Compounds, vol. 577, pp. 1-5, 11/15/ 2013.
[100]A. Kiejna and K. F. Wojciechowski, "Work function of metals: Relation between theory and experiment," Progress in Surface Science, vol. 11, pp. 293-338, // 1981.
[101]K. Kwang Sun, H. Kwang Jun, and J. Kim, "Polymer-Based Flexible Schottky Diode Made With Pentacene-PEDOT:PSS," IEEE Transactions on Nanotechnology, vol. 8, pp. 627-630, 2009.
[102]W. Kim, J. Kyu Kim, Y. Lim, I. Park, Y. Suk Choi, and J. Hyeok Park, "Tungsten oxide/PEDOT:PSS hybrid cascade hole extraction layer for polymer solar cells with enhanced long-term stability and power conversion efficiency," Solar Energy Materials and Solar Cells, vol. 122, pp. 24-30, 3// 2014.
[103]S.-W. Rhee and D.-J. Yun, "Metal-semiconductor contact in organic thin film transistors," Journal of Materials Chemistry, vol. 18, pp. 5437-5444, 2008.
[104]T. Bakhishev and V. Subramanian, "Investigation of Gold Nanoparticle Inks for Low-Temperature Lead-Free Packaging Technology," Journal of Electronic Materials, vol. 38, pp. 2720-2725, 2009/12/01 2009.
[105]Y. Okinaka and M. Kato, "Electroless Deposition of Gold," in Modern Electroplating, ed: John Wiley &; Sons, Inc., 2010, pp. 483-498.
[106]G. Guo, A. Bermak, P. C. H. Chan, and G. Z. Yan, "A monolithic integrated 4 x 4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits," Solid-State Electronics, vol. 51, pp. 69-76, Jan 2007.
[107]A. Lombardi, M. Grassi, P. Malcovati, S. Capone, L. Francioso, P. Siciliano, et al., "A CMOS integrated interface circuit for metal-oxide gas sensors," Sensors and Actuators B: Chemical, vol. 142, pp. 82-89, 2009.
[108]M. Pramod, "Energy efficient integrated gas sensor system with post CMOS functionalization," in 2011 13th International Symposium on Integrated Circuits (ISIC), 2011, pp. 130-135.
[109]J. H. L. Lu, M. Inerowicz, S. Joo, J. K. Kwon, and B. Jung, "A Low-Power, Wide-Dynamic-Range Semi-Digital Universal Sensor Readout Circuit Using Pulsewidth Modulation," IEEE Sensors Journal, vol. 11, pp. 1134-1144, May 2011.
[110]H.-H. Tsai, C.-F. Lin, Y.-Z. Juang, I. L. Wang, Y.-C. Lin, R.-L. Wang, et al., "Multiple type biosensors fabricated using the CMOS BioMEMS platform," Sensors and Actuators B: Chemical, vol. 144, pp. 407-412, 2/17/ 2010.
[111]M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, and C.-K. Song, "Fine patterning of glycerol-doped PEDOT:PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs," Organic Electronics, vol. 11, pp. 854-859, 5// 2010.
[112]J. Z. Wang, J. F. Chang, and H. Sirringhaus, "Contact effects of solution-processed polymer electrodes: Limited conductivity and interfacial doping," Applied Physics Letters, vol. 87, pp. -, 2005.
[113]C.-Y. Lin, J.-G. Chen, C.-W. Hu, J. J. Tunney, and K.-C. Ho, "Using a PEDOT:PSS modified electrode for detecting nitric oxide gas," Sensors and Actuators B: Chemical, vol. 140, pp. 402-406, 7/16/ 2009.
[114]D. Yaping, C. Yanyan, E. M. Tom, E. Stephane, and A. T. C. Johnson, "Gas sensing properties of single conducting polymer nanowires and the effect of temperature," Nanotechnology, vol. 20, p. 434014, 2009.
[115]M. F. Mabrook, C. Pearson, and M. C. Petty, "Inkjet-printed polypyrrole thin films for vapour sensing," Sensors and Actuators B: Chemical, vol. 115, pp. 547-551, 5/23/ 2006.
[116]J.-H. Cho, J.-B. Yu, J.-S. Kim, S.-O. Sohn, D.-D. Lee, and J.-S. Huh, "Sensing behaviors of polypyrrole sensor under humidity condition," Sensors and Actuators B: Chemical, vol. 108, pp. 389-392, 7/22/ 2005.
[117]J. Oliver, M. Lehne, K. Vummidi, A. Bell, and S. Raman, "A low power CMOS sigma-delta readout circuit for heterogeneously integrated chemoresistive micro-/nano- sensor arrays," in Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on, 2008, pp. 2098-2101.
[118]K.-T. Tang, S.-W. Chiu, M.-F. Chang, C.-C. Hsieh, and J.-M. Shyu, "A Low-Power Electronic Nose Signal-Processing Chip for a Portable Artificial Olfaction System," Biomedical Circuits and Systems, IEEE Transactions on, vol. 5, pp. 380-390, 2011.
[119]P. Murali, K. Ranjit, N. Bhat, G. Banerjee, B. Amrutur, K. N. Bhat, et al., "A CMOS Gas Sensor Array Platform With Fourier Transform Based Impedance Spectroscopy," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, pp. 2507-2517, 2012.
[120]F. Molina-Lopez, D. Briand, and N. F. de Rooij, "Large arrays of inkjet-printed MEMS microbridges on foil," in Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on, 2014, pp. 506-509.
[121]MicroFab. (2013, Nov. 9). Complete Systems. Available: http://www.microfab.com/index.php?option=com_content&;view=category&;layout=blog&;id=9&;Itemid=7
[122]Fujifilm. (2012, Nov. 9). Dimatix Materials Printer DMP-5000. Available: http://www.fujifilmusa.com/shared/bin/PDS00087-DMP5000.pdf
[123]m. T. GmbH. (2012, Nov. 9). Autodrop Platform. Available: http://www.microdrop.de/autodrop-platform-69.html
[124]MicroFab. (2013, Nov 9). Microfab Equipment Selection Guide. Available: http://www.microfab.com/index.php?option=com_content&;view=article&;id=26&;Itemid=144
[125]H. P. Le, "Progress and Trends in Ink-jet Printing Technology," Journal of Imaging Science and Technology, vol. 42, p. 14, 1998.
[126]M. M. J. Donald J. Hayes, J. Lester Matthews, "Method and apparatus for improved laser surgery," US Patent 5092864, Mar 3, 1992.
[127]MicroFab. (2013, Nov. 9). MicroJet Integration Guide. Available: http://www.microfab.com/images/pdfs/integrationguide_ver5.pdf
[128]MicroFab. (2012, Nov. 9). Ink-Jet Microdispensing Basic Set-up. Available: http://www.microfab.com/images/pdfs/manuals/Ink-JetMicrodispensingSet-up_UserGuide_2012.pdf
[129]MicroFab. (2013, Nov. 9). MicroJet Cleaning Guide. Available: http://www.microfab.com/index.php?option=com_content&;view=article&;id=28&;Itemid=39