跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/13 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐柏清
研究生(外文):Po-Ching Hsu
論文名稱:p型氧化亞錫半導體與薄膜電晶體之研究
論文名稱(外文):Study of p-Type Semiconductor SnO and Thin Film Transistors
指導教授:吳忠幟
指導教授(外文):Chung-Chih Wu
口試委員:張志豪謝信弘陳俐吟蔡志宏
口試委員(外文):Chih-Hao ChangHsin-Hung HsiehLi-Yin ChenChih-Hung Tsai
口試日期:2014-06-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:130
中文關鍵詞:p型氧化亞錫薄膜電晶體
外文關鍵詞:p-TypeTin MonoxideThin Film Transistor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:661
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來氧化物薄膜電晶體受到廣泛的重視與研究,因為氧化物半導體系統具備高載子遷移率與低溫成膜能力,極有潛力成為下一世代透明軟性電子產品之關鍵材料。雖然n型氧化物半導體領域已獲得重要突破並導入量產,然而至今p型氧化物半導體與薄膜電晶體相關之研究尚稱缺乏,而其元件特性亦無法滿足實際應用。然而,p型氧化物薄膜電晶體是實現氧化物互補式金屬氧化物半導體邏輯電路與傳統有機發光二極體驅動電路不可或缺之元件,由此可知發展高效能p型氧化物薄膜電晶體是現階段最重要的挑戰。由目前已發表的文獻可知,氧化亞錫是p型氧化物半導體中最具潛力可以實現高效能p型元件的材料之一,然而其薄膜電晶體製程與元件特性尚無法相容與滿足量產需求,因此需要更深入的研究。
本論文針對氧化亞錫系統,深入探討靶材、薄膜以及元件之物理與化學特性,研發出相容於現今薄膜電晶體工業量產之靶材與製程技術。本論文之研究成果對於提升氧化亞錫材料的實際應用具有價值。
首先,我們使用適合量產之濺鍍技術搭配純氧化亞錫靶材製備p型氧化亞錫薄膜與薄膜電晶體。研究中詳細分析後退火之效應並藉由接觸電阻分析選擇適合氧化亞錫之實用金屬電極材料,接著使用此金屬電極成功製備p型氧化亞錫薄膜電晶體。第二,針對氧化亞錫靶材無法高溫燒結之缺點,我們探討可高溫燒結之高密度錫/氧化錫混合靶材,並使用此混合靶材搭配純氬氣濺鍍製程成功製備p型氧化亞錫薄膜。第三,我們更進一步使用此錫/氧化錫混合靶材搭配含氫之濺鍍氣氛成功製備具備高優選方向之純氧化亞錫薄膜與薄膜電晶體,並詳細探討氫含量比例與後退火之效應。最終,我們使用化性穩定且已廣泛應用於工業之氧化錫靶材搭配含氫還原製程氣氛製備p型氧化亞錫薄膜與薄膜電晶體,並詳細分析氫含量比例對於結晶結構、成份、表面粗糙度、光學與導電特性之影響。

Thin-film transistors (TFTs) using oxide semiconductors have been regarded as a promising next-generation TFT technology for displays and flexible electronics because of their merits in performance and production. Despite the great success in the development of n-type oxide TFTs in recent years, only few p-type oxide semiconductors were reported for TFTs and their properties and fabrication techniques are still far from practical applications. However, p-type oxide TFTs are strongly demanded in general so that low-power and high-performance complementary circuits can be realized by oxide TFTs and better compatibility with circuits of active-matrix organic light-emitting diode displays may be achieved. Among all p-type oxides reported, tin monoxide (SnO) is considered one of the most promising candidates for realizing practical p-channel devices. However, the properties of SnO-based TFTs and fabrication techniques are not yet good enough for practical applications, necessitating further studies.
In this dissertation, we investigated the SnO system from the material properties to the device characteristics, and developed industry-compatible sputtering targets as well as processing techniques. The research results in this study can facilitate the practical application of SnO in the next-generation display technology.
Firstly, we fabricated p-type SnO thin-films and TFTs by an industry-compatible sputtering technique with the pure SnO ceramic target as the benchmark for further study. The post-annealing effects on SnO films were studied by physical and chemical analysis, and the transmission line method (TLM) was adopted to characterize the contact resistance between SnO layers and various metal electrodes. Lastly, p-type SnO TFTs using practical metal electrodes were successfully fabricated.
In view of the difficulty related to the preparation of pure SnO targets at high temperatures, we further proposed use of Sn/SnO2 mixed target for sputtering deposition of p-type SnO films. The Sn/SnO2 mixed targets can be fabricated by the high-temperature high-pressure pressing/sintering technique and have higher density and robustness more suitable for real uses. The deposited films can be tuned from pure n-type SnO2 to p-type SnO by controlling the sputtering conditions with pure Ar sputtering.
Next, we further investigated sputtering deposition of p-type SnO thin films and TFTs by using the robust Sn/SnO2 mixed target and the hydrogen-containing atmosphere. The effects of the hydrogen gas ratio and post-annealing were studied. Pure polycrystalline SnO films with unified preferential orientation could be readily obtained by appropriate process conditions, and decent p-type SnO TFTs were also demonstrated.
Finally, we investigated the sputtering deposition of p-type SnO using the widely used and robust SnO2 target in a hydrogen-containing reducing atmosphere. The effects of the hydrogen gas ratio on structures, compositions, optical, and electrical properties of deposited SnOx films were studied, and p-type SnO thin-film transistors using such SnO-dominant films were also demonstrated, showing the feasibility and industrial compatibility of this method.

Chapter 1 General Introduction 1
1.1 Background of Present Study 1
1.1.1 Thin Film Transistor 1
1.1.2 Oxide Semiconductor 3
1.1.3 p-Type Oxide Semiconductor 5
1.2 Dissertation Organization 8
Reference 10
Chapter 2 Fabrication of p-Type SnO Thin-Film Transistors Using Sputtering and Practical Metal Electrodes 16
2.1 Introduction 16
2.2 Experimental 19
2.3 Results and Discussion 22
2.3.1 Physical and Chemical Properties of SnO Films 22
2.3.2 Source/drain Material Selection 27
2.3.3 p-Type SnO TFTs 29
2.4 Summary 31
Reference 32
Chapter 3 Sputtering Deposition of p-Type SnO Films Using Robust Sn/SnO2 Mixed Target 48
3.1 Introduction 48
3.2 Experimental 50
3.3 Results and Discussion 51
3.3.1 Sn/SnO2 Mixed Target 51
3.3.2 Characteristics of Films Deposited Using the Sn/SnO2 Mixed Target 52
3.4 Summary 57
Reference 58
Chapter 4 Preparation of p-Type SnO Thin Films and Transistors by Sputtering with Robust Sn/SnO2 Mixed Target in Hydrogen-Containing Atmosphere 65
4.1 Introduction 65
4.2 Experimental 69
4.3 Results and Discussion 72
4.3.1 Influences of H2 Gas Ratio on Characteristics of SnOx Films 72
4.3.2 Influences of Annealing Temperatures 77
4.3.3 Electrical Properties of SnOx Films 79
4.3.4 p-Tpe SnO TFTs 81
4.4 Summary 83
Reference 84
Chapter 5 Sputtering Deposition of p-Type SnO Films with SnO2 Target in Hydrogen-Containing Atmosphere 98
5.1 Introduction 98
5.2 Experimental 101
5.3 Results and Discussion 103
5.3.1 Influences of H2 Gas Ratio on Characteristics of SnOx Films 103
5.3.2 p-Tpe SnO TFTs 108
5.4 Summary 110
Reference 111
Chapter 6 Summary and Future Work 125
6.1 Dissertation Summary 125
6.2 Suggestions for Future Research 128
Reference 130

Chapter 1
1. W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).
2. D. Kahng and M. M. Atalla, IRE Device Research Conference (1960).
3. P. K. Weimer, Proceedings of the Institute of Radio Engineers 50, 1462 (1962).
4. P. G. Lecomber, W. E. Spear and A. Ghaith, Electron. Lett. 15, 179 (1979).
5. A. Tsumura, H. Koezuka and T. Ando, Appl. Phys. Lett. 49, 1210 (1986).
6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
7. J. Kanicki, F. R. Libsch, J. Griffith and R. Polastre, J. Appl. Phys. 69, 2339 (1991).
8. C. Y. Chen and J. Kanicki, IEEE Electron Device Lett. 17, 437 (1996).
9. C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 11 (2001).
10. T. Kamiya, K. Nomura and H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010).
11. H. H. Hsieh and C. C. Wu, Appl. Phys. Lett. 91, 013502 (2007).
12. E. Fortunato, P. Barquinha and R. Martins, Adv. Mater. 24, 2945 (2012).
13. H. Hosono, K. Nomura, Y. Ogo, T. Uruga and T. Kamiya, J. Non-Cryst. Solids 354, 2796 (2008).
14. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008).
15. H. Hosono, J. Non-Cryst. Solids 352, 851 (2006).
16. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano and H. Hosono, Phys. Status Solidi A 206, 2187 (2009).
17. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389, 939 (1997).
18. A. Kudo, H. Yanagi, H. Hosono and H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998).
19. H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano and H. Hosono, Appl. Phys. Lett. 81, 598 (2002).
20. H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano and H. Hosono, Chem. Mater. 20, 326 (2008).
21. H. Mizoguchi, H. Kawazoe and H. Hosono, Chem. Mater. 8, 2769 (1996).
22. J. Pannetier and G. Denes, Acta Crystallogr. B 36, 2763 (1980).
23. H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 97, 072111 (2010).
24. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. K. Park, C. S. Hwang and R. Martins, Appl. Phys. Lett. 97, 052105 (2010).
Chapter 2
1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono: Nature 432, 488 (2004).
2. J. F. Wager and R. Hoffman: IEEE Spectrum 48, 42 (2011).
3. E. Fortunato, P. Barquinha, and R. Martins: Adv. Mater. 24, 2945 (2012).
4. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono: Appl. Phys. Lett. 93, 032113 (2008).
5. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, and H. Hosono: Phys. Status Solidi A 206, 2187 (2009).
6. H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono: Appl. Phys. Lett. 97, 072111 (2010).
7. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. K. Park, C. S. Hwang, and R. Martins: Appl. Phys. Lett. 97, 052105 (2010).
8. H. N. Lee, H. J. Kim, and C. K. Kim: Jpn. J. Appl. Phys. 49, 020202 (2010).
9. D. K. Schroder: Semiconductor Material and Device Characterization (Wiley, New York) 3rd ed., p. 146 (2006).
10. M. Batzill and U. Diebold: Prog. Surf. Sci. 79, 47 (2005).
11. H. Giefers, F. Porsch, and G. Wortmann: Solid State Ionics 176, 199 (2005).
12. J. M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville, and J. M. Gilles: Phys. Rev. B 46, 2460 (1992).
13. L. Kover, G. Moretti, Z. Kovacs, R. Sanjines, I. Cserny, G. Margaritondo, J. Palinkas, and H. Adachi: J. Vac. Sci. Technol. A 13, 1382 (1995).
14. P. D. Padova, M. Fanfoni, R. Larciprete, M. Mangiantini, S. Priori, and P. Perfetti: Surf. Sci. 313, 379 (1994).
15. H. Luo, L. Y. Liang, H. T. Cao, Z. M. Liu, and F. Zhuge: ACS Appl. Mater. Interfaces 4, 5673 (2012).
16. L. Y. Liang, Z. M. Liu, H. T. Cao, W. Y. Xu, X. L. Sun, H. Luo, and K. Cang: J. Phys. D 45, 085101 (2012).
17. W. Guo, L. Fu, Y. Zhang, K. Zhang, L. Y. Liang, Z. M. Liu, H. T. Cao, and X. Q. Pan: Appl. Phys. Lett. 96, 042113 (2010).
18. A. Togo, F. Oba, I. Tanaka, and K. Tatsumi: Phys. Rev. B 74, 195128 (2006).
19. R. Sivaramasubramaniam, M. R. Muhamad, and S. Radhakrishna: Phys. Status Solidi A 136, 215 (1993).
20. W. S. Kim, Y. K. Moon, K. T. Kim, J. H. Lee, B. D. Ahn, and J. W. Park: Thin Solid Films 518, 6357 (2010).
21. H. B. Michaelson: J. Appl. Phys. 48, 4729 (1977).
22. K. Nomura, T. Kamiya, and H. Hosono: Adv. Mater. 23, 3431 (2011).
23. S. M. Sze and K. K. Ng: Physics of Semiconductor Devices (Wiley, New York) 3rd ed., p. 134 (2006).
24. A. M. Cowley and S. M. Sze: J. Appl. Phys. 36, 3212 (1965).
25. V. Heine: Phys. Rev. 138, A1689 (1965).
26. M. D. Irwin, J. D. Servaites, D. B. Buchholz, B. J. Leever, J. Liu, J. D. Emery, M. Zhang, J.-H. Song, M. F. Durstock, A. J. Freeman, M. J. Bedzyk, M. C. Hersam, R. P. H. Chang, M. A. Ratner, and T. J. Marks: Chem. Mater. 23, 2218 (2011).
27. M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn: Org. Electron. 10, 932 (2009).
Chapter 3
1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004).
2. P. C. Chang, Z. Fan, W. Y. Tseng, A. Rajagopal, J. G. Lua, Appl. Phys. Lett. 87, 222102 (2005).
3. H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki, Y. Iwasa, Appl. Phys. Lett. 92, 242107 (2008).
4. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, 032113 (2008).
5. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).
6. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, H. Hosono, Phys. Status Solidi A 206, 2187 (2009).
7. H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 97, 072111 (2010).
8. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. K. Park, C. S. Hwang, R. Martins, Appl. Phys. Lett. 97, 052105 (2010).
9. G. H. Moh, Chem. Erde 33, 243 (1974).
10. R. M. German, A-Z of Powder Metallurgy, Elsevier (2005).
11. J. D. Hanawalt, H. W. Rinn, L. K. Frevel, Anal. Chem. 10, 457 (1938).
12. H. E. Swanson, R. K. Fuyat, G. M. Ugrinic, Natl. Bur. Stand. Circ. 539 IV, 28 (1955).
13. E. Aperathitis, Z. Hatzopoulos, M. Androulidaki, V. Foukaraki, A. Kondilis, C. G. Scott, D. Sands, P. Panayotatos, Sol. Energy Mater. Sol. Cells 45, 161 (1997).
14. K. S. Ahn, Y. C. Nah, Y. E. Sunga, J. Appl. Phys. 92, 1268 (2002).
15. L. Y. Liang, Z. M. Liu, H. T. Cao, X. Q. Pan, Appl. Mater. Interfaces 2, 1060 (2010).
16. K. H. Kim, K. C. Park, D. Y. Ma, J. Appl. Phys. 81, 7764 (1997).
17. J. A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974).
Chapter 4
1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004).
2. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).
3. E. Fortunato, P. Barquinha, and R. Martins, Advan. Mater. 24, 2945 (2012).
4. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and Hideo Hosono, Nature 389, 939 (1997).
5. A. Kudo, H. Yanagi, H. Hosono, and H. Kawazoea, Appl. Phys. Lett. 73, 220 (1998).
6. H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films 236, 27 (1993).
7. A. O. Musa, T. Akomolafe, and M. J. Carter, Sol. Energy Mater. Sol. Cells 51, 305 (1998).
8. X. Q. Pan, and L. Fu, J. Electroceram. 7, 35 (2001).
9. P.-C. Chang, Z. Fan, W.-Y. Tseng, A. Rajagopal, and J. G. Lua, Appl. Phys. Lett. 87, 222102 (2005).
10. H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki, and Y. Iwasa, Appl. Phys. Lett. 92, 242107 (2008).
11. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).
12. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008).
13. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, and H. Hosono, Phys. Status Solidi A 206, 2187 (2009).
14. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.-H. K. Park, C.-S. Hwang, and R. Martins, Appl. Phys. Lett. 97, 052105 (2010).
15. H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Appl. Phys. Lett. 97, 072111 (2010).
16. J. A. Caraveo-Frescas, P. K. Nayak, H. A. Al-Jawhari, D. B. Granato, U. Schwingenschlogl, and H. N. Alshareef, ACS Nano 7, 5160 (2013).
17. P.-C. Hsu, W.-C. Chen, Y.-T. Tsai, Y.-C. Kung, C.-H. Chang, C.-J. Hsu, C.-C. Wu, and H.-H. Hsieh, Jpn. J. Appl. Phys. 52, 05DC07 (2013).
18. H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya, Electrochem. Solid-State Lett. 14, H13 (2011).
19. P.-C. Hsu, W.-C. Chen, Y.-T. Tsai, Y.-C. Kung, C.-H. Chang, C.-J. Hsu, C.-C. Wu, and H.-H. Hsieh, Thin Solid Films 555, 57 (2014).
20. H. M. Otte, J. Appl. Phys. 32, 1536 (1961).
21. M. Batzill, and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).
22. F. K. Lotgering, J. Inorg. Nucl. Chem. 9 113 (1959).
23. H. Luo, L. Y. Liang, H. T. Cao, Z. M. Liu, and F. Zhuge, ACS Appl. Mat. Interfaces 4, 5673 (2012).
24. J. M. Themlin, M. Chtaib, L. Henrard, P. Lambin, J. Darville, and J. M. Gilles, Phys. Rev. B 46, 2460 (1992).
25. L. Kover, Z. Kovacs, R. Sanjines, G. Moretti, I. Cserny, G. Margaritondo, J. Palinkas, and H. Adachi, Surf. Interface Anal. 23, 461 (1995).
26. K. Zhang, F. Zhu, C. H. A. Huan, and A. T. S. Wee, J. Appl. Phys. 86, 974 (1999).
27. K. Zhang, F. Zhu, C. H. A. Huan, and A. T. S. Wee, Thin Solid Film 376, 255 (2000).
28. M. Birkholz, B. Selle, F. Fenske, and W. Fuhs, Phys. Rev. B 68, 205414 (2003).
Chapter 5
1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature 432, 488 (2004).
2. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).
3. E. Fortunato, P. Barquinha and R. Martins, Adv. Mater. 24, 2945 (2012).
4. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389, 939 (1997).
5. A. Kudo, H. Yanagi, H. Hosono and H. Kawazoe, Appl. Phys. Lett. 73, 220 (1998).
6. H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films 236, 27 (1993).
7. A. O. Musa, T. Akomolafe and M. J. Carter, Sol. Energ. Mat. Sol. C 51, 305 (1998).
8. X. Q. Pan and L. Fu, J. Electroceram. 7, 35 (2001).
9. P. C. Chang, Z. Y. Fan, W. Y. Tseng, A. Rajagopal and J. G. Lu, Appl. Phys. Lett. 87, 222102 (2005).
10. H. Shimotani, H. Suzuki, K. Ueno, M. Kawasaki and Y. Iwasa, Appl. Phys. Lett. 92, 242107 (2008).
11. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 93, 202107 (2008).
12. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008).
13. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano and H. Hosono, Phys. Status Solidi A 206, 2187 (2009).
14. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. K. Park, C. S. Hwang and R. Martins, Appl. Phys. Lett. 97, 052105 (2010).
15. H. Yabuta, N. Kaji, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 97, 072111 (2010).
16. P. C. Hsu, W. C. Chen, Y. T. Tsai, Y. C. Kung, C. H. Chang, C. J. Hsu, C. C. Wu and H. H. Hsieh, Jpn. J. Appl. Phys. 52, 05DC07 (2013).
17. H. Hosono, Y. Ogo, H. Yanagi and T. Kamiya, Electrochem. Solid-State Lett. 14, H13 (2011).
18. M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).
19. H. Luo, L. Y. Liang, H. T. Cao, Z. M. Liu and F. Zhuge, Acs Appl. Mater. Inter. 4, 5673 (2012).
20. L. Kover, Z. Kovacs, R. Sanjines, G. Moretti, I. Cserny, G. Margaritondo, J. Palinkas and H. Adachi, Surf. Interface Anal. 23, 461 (1995).
21. K. R. Zhang, F. R. Zhu, C. H. A. Huan and A. T. S. Wee, J. Appl. Phys. 86, 974 (1999).
22. K. Zhang, F. R. Zhu, C. H. A. Huan and A. T. S. Wee, Thin Solid Films 376, 255 (2000).
23. Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi and Y. Kuwano, Jpn. J. Appl. Phys. 30, 1008 (1991).
24. J. Melsheimer and D. Ziegler, Thin Solid Films 129, 35 (1985).
Chapter 6
1. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano and H. Hosono, Appl. Phys. Lett. 93, 032113 (2008).
2. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. K. Park, C. S. Hwang and R. Martins, Appl. Phys. Lett. 97, 052105 (2010).
3. P. C. Hsu, W. C. Chen, Y. T. Tsai, Y. C. Kung, C. H. Chang, C. J. Hsu, C. C. Wu and H. H. Hsieh, Jpn. J. Appl. Phys. 52, 05DC07 (2013).
4. L. Y. Liang, Z. M. Liu, H. T. Cao, W. Y. Xu, X. L. Sun, H. Luo and K. Cang, J. Phys. D Appl. Phys. 45, 085101 (2012).
5. H. Hosono, Y. Ogo, H. Yanagi and T. Kamiya, Electrochem. Solid-State Lett. 14, H13 (2011).
6. Y. Kim, J. H. Jang, J. S. Kim, S. D. Kim and S. E. Kim, Mater. Sci. Eng. B-Adv. 177, 1470 (2012).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top