(34.236.244.39) 您好!臺灣時間:2021/03/09 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林建智
研究生(外文):Chien-Chih Lin
論文名稱:超薄高介電係數介電層金氧半元件之特性分析及可靠度與靈敏度改善
論文名稱(外文):Characterization and Improvement in Reliability and Sensitivity of Metal-Oxide-Semiconductor Devices with Ultrathin High-k Dielectrics
指導教授:胡振國胡振國引用關係
指導教授(外文):Jenn-Gwo Hwu
口試委員:林浩雄曾俊元連振炘吳幼麟賴朝松
口試委員(外文):Hao-Hsiung LinTseung-Yuen TsengChen-Hsin LienYou-Lin WuChao-Sung Lai
口試日期:2014-04-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:214
中文關鍵詞:金氧半元件硝酸補償技術高介電係數氧化層可靠度不均勻度金氧半穿隧式溫度感測器金氧半穿隧式光二極體碲化鎘奈米線
外文關鍵詞:MOS devicesnitric acid compensation techniquehigh-k oxidesreliabilitynonuniformityMOS tunneling temperature sensorsMOS tunneling photodiodesCdTe nanowire
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
With the aggressive downscaling of MOS devices in semiconductor industry, the high-k gate dielectrics continuously play significant roles to achieve small equivalent oxide thickness for high-performance logic technology. The low manufacturing cost and low-temperature process of high-k dielectrics are also of practical interests for display and solar cell industry. In this dissertation, the Al2O3 MOS devices using room-temperature sputtering followed HNO3 compensation technique were demonstrated. After HNO3 compensation, the surface roughness, interface trap density, flatband voltage, and leakage current would also be effectively improved. The better reliability performance was also observed in dielectric breakdown tests and ten-year lifetime projections. Moreover, the positive bias current of Al2O3 MOS devices without HNO3 compensation showed the irregular temperature response at temperature above 70 ℃, which is corresponding to Frenkel-Poole emission. In contrast, the generation-recombination current is the dominant component for the Al2O3 MOS devices with HNO3 compensation. Using the temperature-sensitive current characteristics, we successfully demonstrated the Al2O3 MOS tunneling temperature sensors with enhanced temperature sensitivity and improved power consumption in comparison with SiO2 and HfO2 sensors. Subsequently, the electrical nonuniformity of ultrathin SiO2 and HfO2 gate dielectrics was investigated. The effective uniform area ratio regarded as an indication of gate oxide quality can be extracted from the deep depletion of C-V characteristics. In our cases, the effective uniform area ratio increases with SiO2 thickness, whereas decreases with increasing equivalent oxide thickness of HfO2, which was also reconfirmed by the same trend of leakage current fluctuations and the constant field stress measurements. Furthermore, a particular edge-dependent inversion current behavior resulting from edge fringing effect was observed for MOS tunneling diodes. The inversion current would increase with increasing tooth spacing for comb-shaped MOS tunneling diodes. The results suggested that the current conduction would be controlled by the electron diffusion current between the teeth and hole tunneling current affected by Schottky barrier height lowering. Finally, the photosensitivity can be improved by reducing SiO2 thickness and selecting smaller tooth spacing for SiO2 comb-shaped MOS tunneling photodiodes. In addition, the HfO2 photodiodes demonstrated high and steady photosensitivity owing to the current conduction dominated by electron only and smaller conduction band offset. In appendix of this dissertation, the electrical transport and photoconductive characteristics of CdTe nanowire transistors were investigated, which cooperated with the NANI group in University of Southern California. The Sb doped CdTe nanowire transistors exhibited p-type conductivity. Two acceptor levels existing in energy bandgap of CdTe nanowire were found via low-temperature electrical measurements, which is exactly in agreement with the photoluminescence measurement results. In addition, the Sb doped CdTe nanowire transistors demonstrated significant photoresponse to visible-near-infrared irradiation.

Contents
Abstract (Chinese) I
Abstract (English) III
Contents V
List of Figure Captions XI
List of Table Captions XIX
Chapter 1 Introduction
1-1 Motivation 1
1-2 High-k Gate Dielectrics 5
1-3 Interface Issues in Advanced MOS Devices 7
1-4 Gate Oxide Reliability of MOS Devices 8
1-5 MOS Tunneling Temperature Sensors 9
1-6 MOS Tunneling Photodiodes 10
1-7 Thesis Overview 11
Chapter 2 Improvement in Physical and Electrical Characteristics of Low-Temperature Processing Al2O3 High-k Dielectrics Utilizing Nitric Acid Compensation Method
2-1 Introduction 17
2-2 Experimental Details 19
2-2-1 Fabrication of Al2O3 MOS Capacitors 19
2-2-2 Measurement Details 21
2-3 Physical Properties of Al2O3 High-k Dielectrics 21
2-3-1 Surface Topography of Al2O3 High-k Dielectrics 21
2-3-2 Microstructure and Elemental Analysis of Al2O3 MOS Capacitors 22
2-4 Electrical Properties of Al2O3 MOS Capacitors 23
2-4-1 Capacitance-Voltage Characteristics 23
2-4-2 Interface Properties 25
2-4-3 Current-Voltage Characteristics 26
2-4-4 Comprehensive Discussion of Electrical Characteristics 27
2-5 Summary 28
Chapter 3 Nitric Acid Compensated Al2O3 MOS Devices with Improved Negative Bias Reliability and Positive Bias Temperature Response
3-1 Introduction 41
3-2 Experimental Details 43
3-2-1 Fabrication of Al2O3 MOS Capacitors 43
3-2-2 Measurement Details 44
3-3 Comparison of Room-Temperature Reliability Performance for Al2O3 MOS Devices without and with Nitric Acid Compensation 44
3-3-1 Time-Zero Dielectric Breakdown Measurements 44
3-3-2 Time-Dependent Dielectric Breakdown CVS Measurements 46
3-3-3 Time-Dependent Dielectric Breakdown CCS Measurements 48
3-3-4 Illustration of Dielectric Breakdown Mechanism 50
3-4 Temperature-Dependent Negative Bias Reliability Analysis 52
3-4-1 Temperature-Dependent CVS Measurements 52
3-4-2 Ten-Year Lifetime Projection 53
3-5 Improvement of Positive Bias Temperature Response 54
3-5-1 Temperature-Dependent Current Conduction Behaviors 54
3-5-2 Fundamental Current Conduction Mechanism 55
3-5-3 Illustration of Current Instability (Higher Temperature Response) 58
3-6 Summary 61
Chapter 4 Performance Enhancement of MOS Tunneling Temperature Sensors by Employing Ultrathin Al2O3 High-k Dielectrics
4-1 Introduction 75
4-2 Experimental Details 77
4-2-1 Fabrication of MOS Tunneling Temperature Sensors 77
4-2-2 Measurement Details 79
4-3 Working Principle and Design Concept 80
4-3-1 Current Conduction Mechanism and Working Principle 80
4-3-2 Design Concept Description 82
4-4 Characterization of Al2O3 MOS Tunneling Temperature Sensors 84
4-4-1 Temperature-Sensitive Characteristics 84
4-4-2 Investigation of Dominant Current Conduction Mechanism 85
4-4-3 Cycling Reliability Performance 87
4-5 Comparison of SiO2, HfO2 and Al2O3 MOS tunneling Temperature Sensors 88
4-5-1 Enhanced Temperature Sensitivity by Employing Al2O3 Dielectrics 88
4-5-2 Saturation Voltage Improvement by Employing Al2O3 Dielectrics 89
4-5-3 Comprehensive Discussion of Three Kinds of Temperature Sensors.91
4-6 Summary 92
Chapter 5 Electrical Nonuniformity Phenomenon in Deep Depletion Capacitance-Voltage Behavior of MOS Capacitors with Ultrathin SiO2 and High-k Dielectrics
5-1 Introduction 105
5-2 Experimental Details 107
5-2-1 Fabrication of MOS Capacitors with SiO2 and HfO2 Dielectrics 107
5-2-2 Measurement Details 107
5-3 Deep Depletion Behaviors of Capacitance-Voltage Characteristics for MOS Capacitors with Ultrathin Oxides 108
5-3-1 Brief of Deep Depletion Behaviors in MOS Devices 108
5-3-2 Different Deep Depletion Behaviors of MOS Capacitors with SiO2 and HfO2 High-k dielectrics 109
5-4 Concept of Local Depletion Capacitance and Effective Uniform Area Ratio
5-4-1 Concept of Local Depletion Capacitance 110
5-4-2 Concept of Effective Uniform Area Ratio 112
5-5 Investigation of Electrical Nonuniformity in Ultrathin SiO2 and HfO2 High-k Dielectrics 116
5-5-1 Comparison of Electrical Nonuniformity in Ultrathin SiO2 and HfO2 High-k Dielectrics 116
5-5-2 Connection between Leakage Current and Electrical Nonuniformity 117
5-5-3 Relationship between Reliability and Electrical Nonuniformity 118
5-6 Summary 119
Chapter 6 Investigation on Edge Fringing Effect and Oxide Thickness Dependence of Inversion Current in MOS Tunneling Diodes with Comb-Shaped Electrodes
6-1 Introduction 131
6-2 Experimental and Design Concept of Electrode Patterns 134
6-2-1 Experimental and Measurement Details 134
6-2-2 Parameters of Square and Comb-Shaped Electrodes 135
6-3 Edge-Dependent Inversion Tunneling Current Behavior 136
6-3-1 Edge-Dependent Current-Voltage Characteristics 136
6-3-2 Current Conduction Mechanism and Device Simulation 137
6-4 Characteristics of MOS Tunneling Photodiodes with Ultrathin SiO2 and HfO2 High-k Dielectrics 141
6-4-1 Thickness-Dependent Inversion Current of SiO2 MOS tunneling diodes 141
6-4-2 Comparison of Inversion Current Photoresponse for MOS Tunneling Photodiodes with Ultrathin SiO2 and HfO2 High-k Dielectrics 142
6-5 Summary 144
Chapter 7 Conclusion and Perspective
7-1 Conclusion 157
7-2 Perspective and Future Work 160
Appendix Antimony Doped Cadmium Telluride Semiconductor Nanowires: Synthesis, Characterization and Application
A-1 Introduction 163
A-2 Experimental Details 165
A-3 Morphologies and Structure Characterization 167
A-4 Electrical Transport and Photoluminescence Characteristics 168
A-5 Photodetector Performance 173
A-6 Summary 175
References 191
Publication List 213


References
[1]D. Kahng and M. Atalla, "Silicon-silicon dioxide field induced surface devices," presented at the IRE-AIEE Solid-State Device Research Conference, 1960.
[2]G. E. Moore, "Cramming more components onto integrated circuits," Electronics, vol. 38, pp. 114-117, 1965.
[3]G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, pp. 82-85, Jan 1998.
[4]S. Borkar, "Design challenges of technology scaling," Micro, IEEE, vol. 19, pp. 23-29, 1999.
[5]S. G. Chamberlain and S. Ramanan, "Drain-induced barrier-lowering analysis in VLSI MOSFET devices using two-dimensional numerical simulations," IEEE Transactions on Electron Devices, vol. 33, pp. 1745-1753, Nov 1986.
[6]T. A. Fjeldly and M. Shur, "Threshold voltage modeling and the subthreshold regime of operation of short-channel MOSFETs," IEEE Transactions on Electron Devices, vol. 40, pp. 137-145, Jan 1993.
[7]Z. H. Liu, C. M. Hu, J. H. Huang, T. Y. Chan, M. C. Jeng, P. K. Ko, and Y. C. Cheng, "Threshold voltage model for deep-submicrometer MOSFETs," IEEE Transactions on Electron Devices, vol. 40, pp. 86-95, Jan 1993.
[8]W. Fikry, G. Ghibaudo, and M. Dutoit, "Temperature dependence of drain-induced barrier lowering in deep submicrometre MOSFETs," Electronics Letters, vol. 30, pp. 911-912, May 1994.
[9]D. J. Frank, Y. Taur, and H. S. P. Wong, "Generalized scale length for two-dimensional effects in MOSFET''s," IEEE Electron Device Letters, vol. 19, pp. 385-387, Oct 1998.
[10]C. H. Shih, Y. M. Chen, and C. Lien, "An analytical threshold voltage roll-off equation for MOSFET by using effective-doping model," Solid-State Electronics, vol. 49, pp. 808-812, 2005.
[11]W. H. Lo, T. C. Chang, J. Y. Tsai, C. H. Dai, C. E. Chen, S. H. Ho, H. M. Chen, O. Cheng, and C. T. Huang, "Charge trapping induced drain-induced-barrier-lowering in HfO2/TiN p-channel metal-oxide-semiconductor-field-effect-transistors under hot carrier stress," Applied Physics Letters, vol. 100, Apr 2012.
[12]W. C. Luo, H. Yang, W. W. Wang, L. C. Zhao, H. Xu, S. Q. Ren, B. Tang, Z. Y. Tang, Y. F. Xu, J. Xu, J. Yan, C. Zhao, D. P. Chen, and T. C. Ye, "Physical understanding of different drain-induced-barrier-lowering variations in high-k/metal gate n-channel metal-oxide-semiconductor-fieldeffect-transistors induced by charge trapping under normal and reverse channel hot carrier stresses," Applied Physics Letters, vol. 103, Oct 2013.
[13]S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET''s," IEEE Electron Device Letters, vol. 18, pp. 209-211, May 1997.
[14]Y. Shi, X. W. Wang, and T. P. Ma, "Tunneling leakage current in ultrathin (< 4 nm) nitride/oxide stack dielectrics," IEEE Electron Device Letters, vol. 19, pp. 388-390, Oct 1998.
[15]N. Yang, W. K. Henson, J. R. Hauser, and J. J. Wortman, "Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices," IEEE Transactions on Electron Devices, vol. 46, pp. 1464-1471, Jul 1999.
[16]S. Mudanai, Y. Y. Fan, Q. Ouyang, A. F. Tasch, and S. K. Banerjee, "Modeling of direct tunneling current through gate dielectric stacks," IEEE Transactions on Electron Devices, vol. 47, pp. 1851-1857, Oct 2000.
[17]Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. M. Hu, X. W. Wang, X. Guo, and T. P. Ma, "Direct tunneling gate leakage current in transistors with ultrathin silicon nitride gate dielectric," IEEE Electron Device Letters, vol. 21, pp. 540-542, Nov 2000.
[18]K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits," Proceedings of the IEEE, vol. 91, pp. 305-327, Feb 2003.
[19]E. P. Nakhmedov, K. Wieczorek, H. Burghardt, and C. Radehaus, "Quantum-mechanical study of the direct tunneling current in metal-oxide-semiconductor structures," Journal of Applied Physics, vol. 98, Jul 2005.
[20]C. H. Chen, K. C. Chuang, and J. G. Hwu, "Characterization of inversion tunneling current saturation behavior for MOS(p) capacitors with ultrathin oxides and high-k dielectrics," IEEE Transactions on Electron Devices, vol. 56, pp. 1262-1268, Jun 2009.
[21]E. Ko, K. R. Lee, and H. J. Choi, "Effects of interfacial suboxides and dangling bonds on tunneling current through nanometer-thick SiO2 layers," Physical Review B, vol. 84, Jul 2011.
[22]J. C. Ranuarez, M. J. Deen, and C. H. Chen, "A review of gate tunneling current in MOS devices," Microelectronics Reliability, vol. 46, pp. 1939-1956, Dec 2006.
[23]H. Iwai, "Roadmap for 22 nm and beyond," Microelectronic Engineering, vol. 86, pp. 1520-1528, Jul-Sep 2009.
[24]Y. K. Choi, K. Asano, N. Lindert, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, "Ultra-thin body SOI MOSFET for deep-sub-tenth micron era," in IEEE International Electron Devices Meeting (IEDM), 1999, pp. 919-921.
[25]Y. K. Choi, K. Asano, N. Lindert, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, "Ultrathin-body SOI MOSFET for deep-sub-tenth micron era," IEEE Electron Device Letters, vol. 21, pp. 254-255, May 2000.
[26]L. Chang, K. J. Yang, Y. C. Yeo, I. Polishchuk, T. J. King, and C. M. Hu, "Direct-tunneling gate leakage current in double-gate and ultrathin body MOSFETs," IEEE Transactions on Electron Devices, vol. 49, pp. 2288-2295, Dec 2002.
[27]J. Koga, S. Takagi, and A. Toriumi, "Influences of buried-oxide interface on inversion-layer mobility in ultra-thin SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 49, pp. 1042-1048, Jun 2002.
[28]T. Ernst, S. Cristoloveanu, G. Ghibaudo, T. Ouisse, S. Horiguchi, Y. Ono, Y. Takahashi, and K. Murase, "Ultimately thin double-gate SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 50, pp. 830-838, Mar 2003.
[29]V. P. Trivedi and J. G. Fossum, "Scaling fully depleted SOI CMOS," IEEE Transactions on Electron Devices, vol. 50, pp. 2095-2103, Oct 2003.
[30]A. Chaudhry and M. J. Kumar, "Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: A review," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 99-109, Mar 2004.
[31]V. P. Trivedi and J. G. Fossum, "Nanoscale FD/SOI CMOS: Thick or thin BOX?," IEEE Electron Device Letters, vol. 26, pp. 26-28, Jan 2005.
[32]G. Tsutsui, M. Saitoh, T. Nagumo, and T. Hiramoto, "Impact of SOI thickness fluctuation on threshold voltage variation in ultra-thin body SOI MOSFETs," IEEE Transactions on Nanotechnology, vol. 4, pp. 369-373, May 2005.
[33]G. Tsutsui and T. Hiramoto, "Mobility and threshold-voltage comparison between (110)- and (100)-oriented ultrathin-body silicon MOSFETs," IEEE Transactions on Electron Devices, vol. 53, pp. 2582-2588, Oct 2006.
[34]S. Eminente, S. Cristoloveanu, R. Clerc, A. Ohata, and G. Ghibaudo, "Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects," Solid-State Electronics, vol. 51, pp. 239-244, Feb 2007.
[35]S. H. Jin, M. V. Fischetti, and T. W. Tang, "Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 54, pp. 2191-2203, Sep 2007.
[36]A. Majumdar, Z. B. Ren, S. J. Koester, and W. Haensch, "Undoped-body extremely thin SOI MOSFETs with back gates," IEEE Transactions on Electron Devices, vol. 56, pp. 2270-2276, Oct 2009.
[37]G. Darbandy, F. Lime, A. Cerdeira, M. Estrada, I. Garduno, and B. Iniguez, "Study of potential high-k dielectric for UTB SOI MOSFETs using analytical modeling of the gate tunneling leakage," Semiconductor Science and Technology, vol. 26, Nov 2011.
[38]N. Agrawal, Y. Kimura, R. Arghavani, and S. Datta, "Impact of transistor architecture (bulk planar, trigate on bulk,ultrathin-body planar SOI) and material (silicon or III-V semiconductor) on variation for logic and SRAM applications," IEEE Transactions on Electron Devices, vol. 60, pp. 3298-3304, Oct 2013.
[39]D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. M. Hu, "FinFET - A self-aligned double-gate MOSFET scalable to 20 nm," IEEE Transactions on Electron Devices, vol. 47, pp. 2320-2325, Dec 2000.
[40]X. J. Huang, W. C. Lee, C. Kuo, D. Hisamoto, L. L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. K. Choi, K. Asano, V. Subramanian, T. J. King, J. Bokor, and C. M. Hu, "Sub-50 nm p-channel FinFET," IEEE Transactions on Electron Devices, vol. 48, pp. 880-886, May 2001.
[41]Y. K. Choi, T. J. King, and C. M. Hu, "Nanoscale CMOS spacer FinFET for the terabit era," IEEE Electron Device Letters, vol. 23, pp. 25-27, Jan 2002.
[42]B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. Y. Yang, C. Tabery, C. Ho, Q. Xiang, T. J. King, J. Bokor, C. Hu, M. R. Lin, and D. Kyser, "FinFET scaling to 10 nm gate length," in IEEE International Electron Devices Meeting (IEDM), 2002, pp. 251-254.
[43]L. L. Chang, Y. K. Choi, J. Kedzierski, N. Lindert, P. Q. Xuan, J. Bokor, C. M. Hu, and T. J. King, "Moore''s law lives on - Ultra-thin body SOI and FinFET CMOS transistors look to continue Moore''s law for many years to come," IEEE Circuits &; Devices, vol. 19, pp. 35-42, Jan 2003.
[44]D. M. Fried, J. S. Duster, and K. T. Kornegay, "Improved independent gate N-type FinFET fabrication and characterization," IEEE Electron Device Letters, vol. 24, pp. 592-594, Sep 2003.
[45]J. Kedzierski, M. Ieong, E. Nowak, T. S. Kanarsky, Y. Zhang, R. Roy, D. Boyd, D. Fried, and H. S. P. Wong, "Extension and source/drain design for high-performance FinFET devices," IEEE Transactions on Electron Devices, vol. 50, pp. 952-958, Apr 2003.
[46]D. M. Fried, J. S. Duster, and K. T. Kornegay, "High-performance p-type independent-gate FinFETs," IEEE Electron Device Letters, vol. 25, pp. 199-201, Apr 2004.
[47]W. Z. Xiong, G. Gebara, J. Zaman, M. Gostkowski, B. Nguyen, G. Smith, D. Lewis, C. R. Cleavelin, R. Wise, S. F. Yu, M. Pas, T. J. King, and J. P. Colinge, "Improvement of FinFET electrical characteristics by hydrogen annealing," IEEE Electron Device Letters, vol. 25, pp. 541-543, Aug 2004.
[48]T. Rudenko, N. Collaert, S. De Gendt, V. Kilchytska, M. Jurczak, and D. Flandre, "Effective mobility in FinFET structures with HfO2 and SiON gate dielectrics and TaN gate electrode," Microelectronic Engineering, vol. 80, pp. 386-389, Jun 2005.
[49]Y. Liu, S. Kijima, E. Sugimata, M. Masahara, K. Endo, T. Matsukawa, K. Ishii, K. Sakamoto, T. Sekigawa, H. Yamauchi, Y. Takanashi, and E. Suzuki, "Investigation of the TiN gate electrode with tunable work function and its application for FinFET fabrication," IEEE Transactions on Nanotechnology, vol. 5, pp. 723-730, Nov 2006.
[50]M. H. Chiang, J. N. Lin, K. Kim, and C. T. Chuang, "Random dopant fluctuation in limited-width FinFET technologies," IEEE Transactions on Electron Devices, vol. 54, pp. 2055-2060, Aug 2007.
[51]K. Akarvardar, C. D. Young, M. O. Baykan, I. Ok, T. Ngai, K. W. Ang, M. P. Rodgers, S. Gausepohl, P. Majhi, C. Hobbs, P. D. Kirsch, and R. Jammy, "Impact of fin doping and gate stack on FinFET (110) and (100) electron and hole mobilities," IEEE Electron Device Letters, vol. 33, pp. 351-353, Mar 2012.
[52]E. E. Aktakka, N. Ghafouri, C. E. Smith, R. L. Peterson, M. M. Hussain, and K. Najafi, "Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SOI substrate," IEEE Electron Device Letters, vol. 34, pp. 1334-1336, Oct 2013.
[53]K. K. Bhuwalka, S. Sedlmaier, A. K. Ludsteck, A. Tolksdorf, J. Schulze, and I. Eisele, "Vertical tunnel field-effect transistor," IEEE Transactions on Electron Devices, vol. 51, pp. 279-282, Feb 2004.
[54]W. Y. Choi, B. G. Park, J. D. Lee, and T. J. K. Liu, "Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec," IEEE Electron Device Letters, vol. 28, pp. 743-745, Aug 2007.
[55]A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, "Tunnel field-effect transistor without gate-drain overlap," Applied Physics Letters, vol. 91, Jul 2007.
[56]P. F. Guo, L. T. Yang, Y. Yang, L. Fan, G. Q. Han, G. S. Samudra, and Y. C. Yeo, "Tunneling field-effect transistor: effect of strain and temperature on tunneling current," IEEE Electron Device Letters, vol. 30, pp. 981-983, Sep 2009.
[57]M. Schlosser, K. K. Bhuwalka, M. Sauter, T. Zilbauer, T. Sulima, and I. Eisele, "Fringing-induced drain current improvement in the tunnel field-effect transistor with high-k gate dielectrics," IEEE Transactions on Electron Devices, vol. 56, pp. 100-108, Jan 2009.
[58]C. Anghel, P. Chilagani, A. Amara, and A. Vladimirescu, "Tunnel field effect transistor with increased ON current, low-k spacer and high-k dielectric," Applied Physics Letters, vol. 96, Mar 2010.
[59]W. Y. Choi and W. Lee, "Hetero-gate-dielectric tunneling field-effect transistors," IEEE Transactions on Electron Devices, vol. 57, pp. 2317-2319, Sep 2010.
[60]A. S. Verhulst, B. Soree, D. Leonelli, W. G. Vandenberghe, and G. Groeseneken, "Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor," Journal of Applied Physics, vol. 107, Jan 2010.
[61]A. M. Ionescu and H. Riel, "Tunnel field-effect transistors as energy-efficient electronic switches," Nature, vol. 479, pp. 329-337, Nov 2011.
[62]P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H. J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, and J. Bude, "GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition," IEEE Electron Device Letters, vol. 24, pp. 209-211, Apr 2003.
[63]M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, "Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3," Applied Physics Letters, vol. 87, Dec 2005.
[64]S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, "Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer," Applied Physics Letters, vol. 88, Jan 2006.
[65]R. J. W. Hill, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, and L. G. Thayne, "Enhancement-mode GaAs MOSFETs with an In0.3Ga0.7As channel, a mobility of over 5000 cm(2)/V center dot s, and transconductance of over 475 mu S/mu m," IEEE Electron Device Letters, vol. 28, pp. 1080-1082, Dec 2007.
[66]Y. Xuan, P. D. Ye, and T. Shen, "Substrate engineering for high-performance surface-channel III-V metal-oxide-semiconductor field-effect transistors," Applied Physics Letters, vol. 91, Dec 2007.
[67]P. D. Ye, "Main determinants for III-V metal-oxide-semiconductor field-effect transistors (invited)," Journal of Vacuum Science &; Technology A, vol. 26, pp. 697-704, Jul-Aug 2008.
[68]M. Luisier and G. Klimeck, "Atomistic full-band design study of InAs band-to-band tunneling field-effect transistors," IEEE Electron Device Letters, vol. 30, pp. 602-604, Jun 2009.
[69]J. A. del Alamo, "Nanometre-scale electronics with III-V compound semiconductors," Nature, vol. 479, pp. 317-323, Nov 2011.
[70]A. C. Ford, C. W. Yeung, S. Chuang, H. S. Kim, E. Plis, S. Krishna, C. M. Hu, and A. Javey, "Ultrathin body InAs tunneling field-effect transistors on Si substrates," Applied Physics Letters, vol. 98, Mar 2011.
[71]F. Chen, J. L. Xia, D. K. Ferry, and N. J. Tao, "Dielectric screening enhanced performance in graphene FET," Nano Letters, vol. 9, pp. 2571-2574, Jul 2009.
[72]G. Fiori and G. Iannaccone, "On the possibility of tunable-gap bilayer graphene FET," IEEE Electron Device Letters, vol. 30, pp. 261-264, Mar 2009.
[73]L. Liao, J. W. Bai, Y. Q. Qu, Y. Huang, and X. F. Duan, "Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors," Nanotechnology, vol. 21, Jan 2010.
[74]Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene," Science, vol. 327, pp. 662-662, Feb 2010.
[75]F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, pp. 487-496, Jul 2010.
[76]F. N. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, "Graphene field-effect transistors with high on/off current ratio and large transport and gap at room temperature," Nano Letters, vol. 10, pp. 715-718, Feb 2010.
[77]D. Reddy, L. F. Register, G. D. Carpenter, and S. K. Banerjee, "Graphene field-effect transistors " Journal of Physics D-Applied Physics, vol. 45, Jan 2012.
[78]G. Eda, A. Nathan, P. Wobkenberg, F. Colleaux, K. Ghaffarzadeh, T. D. Anthopoulos, and M. Chhowalla, "Graphene oxide gate dielectric for graphene-based monolithic field effect transistors," Applied Physics Letters, vol. 102, Apr 2013.
[79]S. Ghatak, A. N. Pal, and A. Ghosh, "Nature of electronic states in atomically thin MoS2 field-effect transistors," Acs Nano, vol. 5, pp. 7707-7712, Oct 2011.
[80]B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature Nanotechnology, vol. 6, pp. 147-150, Mar 2011.
[81]B. Radisavljevic, M. B. Whitwick, and A. Kis, "Integrated circuits and logic operations based on single-layer MoS2," Acs Nano, vol. 5, pp. 9934-9938, Dec 2011.
[82]H. Liu, A. T. Neal, and P. D. D. Ye, "Channel length scaling of MoS2 MOSFETs," Acs Nano, vol. 6, pp. 8563-8569, Oct 2012.
[83]H. Liu and P. D. D. Ye, "MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric," IEEE Electron Device Letters, vol. 33, pp. 546-548, Apr 2012.
[84]H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, "Integrated circuits based on bilayer MoS2 transistors," Nano Letters, vol. 12, pp. 4674-4680, Sep 2012.
[85]Z. Y. Yin, H. Li, L. Jiang, Y. M. Shi, Y. H. Sun, G. Lu, Q. Zhang, X. D. Chen, and H. Zhang, "Single-layer MoS2 phototransistors," Acs Nano, vol. 6, pp. 74-80, Jan 2012.
[86]W. Z. Bao, X. H. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, "High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects," Applied Physics Letters, vol. 102, Jan 2013.
[87]A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, "Logic circuits with carbon nanotube transistors," Science, vol. 294, pp. 1317-1320, Nov 2001.
[88]L. J. Lauhon, M. S. Gudiksen, C. L. Wang, and C. M. Lieber, "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature, vol. 420, pp. 57-61, Nov 2002.
[89]Y. Cui, Z. H. Zhong, D. L. Wang, W. U. Wang, and C. M. Lieber, "High performance silicon nanowire field effect transistors," Nano Letters, vol. 3, pp. 149-152, Feb 2003.
[90]N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, "High-performance fully depleted silicon-nanowire (diameter <= 5 nm) gate-all-around CMOS devices," IEEE Electron Device Letters, vol. 27, pp. 383-386, May 2006.
[91]G. M. Cohen, M. J. Rooks, J. O. Chu, S. E. Laux, P. M. Solomon, J. A. Ott, R. J. Miller, and W. Haensch, "Nanowire metal-oxide-semiconductor field effect transistor with doped epitaxial contacts for source and drain," Applied Physics Letters, vol. 90, Jun 2007.
[92]H. M. Fahad, C. E. Smith, J. P. Rojas, and M. M. Hussain, "Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits," Nano Letters, vol. 11, pp. 4393-4399, Oct 2011.
[93]S. K. Sinha and S. Chaudhury, "Impact of oxide thickness on gate capacitance- A comprehensive analysis on MOSFET, Nanowire FET, and CNTFET devices," IEEE Transactions on Nanotechnology, vol. 12, pp. 958-964, Nov 2013.
[94]T. Wang, L. Lou, and C. Lee, "A junctionless gate-all-around silicon nanowire FET of high linearity and Its potential applications," IEEE Electron Device Letters, vol. 34, pp. 478-480, Apr 2013.
[95]M. L. Green, E. P. Gusev, R. Degraeve, and E. L. Garfunkel, "Ultrathin (< 4 nm) SiO(2) and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits," Journal of Applied Physics, vol. 90, pp. 2057-2121, Sep 2001.
[96]G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics, vol. 89, pp. 5243-5275, May 2001.
[97]G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, "Review on high-k dielectrics reliability issues," IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 5-19, Mar 2005.
[98]J. Robertson, "High dielectric constant gate oxides for metal oxide Si transistors," Reports on Progress in Physics, vol. 69, pp. 327-396, Feb 2006.
[99]W. Arden, M. Brillouet, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "“More-than-Moore” White Paper," Available: http://www.itrs.net, 2010.
[100]C. H. Diaz, K. Goto, H. T. Huang, Y. Yasuda, C. P. Tsao, T. T. Chu, W. T. Lu, V. Chang, Y. T. Hou, Y. S. Chao, P. F. Hsu, C. L. Chen, K. C. Lin, J. A. Ng, W. C. Yang, C. H. Chen, Y. H. Peng, C. J. Chen, C. C. Chen, M. H. Yu, L. Y. Yeh, K. S. You, K. S. Chen, K. B. Thei, C. H. Lee, S. H. Yang, J. Y. Cheng, K. T. Huang, J. J. Liaw, Y. Ku, S. M. Jang, H. Chuang, and M. S. Liang, "32nm gate-first high-k/metal-gate technology for high performance low power applications," in IEEE International Electron Devices Meeting (IEDM), 2008, pp. 1-4.
[101]X. Chen, S. Samavedam, V. Narayanan, K. Stein, C. Hobbs, C. Baiocco, W. Li, D. Jaeger, M. Zaleski, H. S. Yang, N. Kim, Y. Lee, D. Zhang, L. Kang, J. Chen, H. Zhuang, A. Sheikh, J. Wallner, M. Aquilino, J. Han, Z. Jin, J. Li, G. Massey, S. Kalpat, R. Jha, N. Moumen, R. Mo, S. Kirshnan, X. Wang, M. Chudzik, M. Chowdhury, D. Nair, C. Reddy, Y. W. Teh, C. Kothandaraman, D. Coolbaugh, S. Pandey, D. Tekleab, A. Thean, M. Sherony, C. Lage, J. Sudijono, R. Lindsay, J. H. Ku, M. Khare, and A. Steegen, "A cost effective 32nm high-K/ metal gate CMOS technology for low power applications with single-metal/gate-first process," in Symposium on VLSI Technology 2008, pp. 88-89.
[102]"International Technology Roadmap for Semiconductors," Available: http://www.itrs.net.
[103]C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Advanced Materials, vol. 14, pp. 99-+, Jan 2002.
[104]S. Uchikoga, "Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays," Mrs Bulletin, vol. 27, pp. 881-886, Nov 2002.
[105]S. J. Lee, S. W. Lee, K. M. Oh, S. J. Park, K. E. Lee, Y. S. Yoo, K. M. Lim, M. S. Yang, Y. S. Yang, and Y. K. Hwang, "A novel five-photomask low-temperature polycrystalline silicon CMOS structure for AMLCD application," IEEE Transactions on Electron Devices, vol. 57, pp. 2324-2329, Sep 2010.
[106]K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, "Field effect transistors with SrTiO(3) gate dielectric on Si," Applied Physics Letters, vol. 76, pp. 1324-1326, Mar 2000.
[107]J. Kolodzey, E. A. Chowdhury, T. N. Adam, G. H. Qui, I. Rau, J. O. Olowolafe, J. S. Suehle, and Y. Chen, "Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon," IEEE Transactions on Electron Devices, vol. 47, pp. 121-128, Jan 2000.
[108]J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, "Properties of high kappa gate dielectrics Gd2O3 and Y2O3 for Si," Journal of Applied Physics, vol. 89, pp. 3920-3927, Apr 2001.
[109]S. Miyazaki, "Photoemission study of energy-band alignments and gap-state density distributions for high-k dielectrics," Journal of Vacuum Science &; Technology B, vol. 19, pp. 2212-2216, Nov-Dec 2001.
[110]T. Kauerauf, R. Degraeve, E. Cartier, C. Soens, and G. Groeseneken, "Low Weibull slope of breakdown distributions in high-k layers," IEEE Electron Device Letters, vol. 23, pp. 215-217, Apr 2002.
[111]J. B. Kim, D. R. Kwon, K. Chakrabarti, C. Lee, K. Y. Oh, and J. H. Lee, "Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique," Journal of Applied Physics, vol. 92, pp. 6739-6742, Dec 2002.
[112]W. J. Zhu, T. P. Ma, T. Tamagawa, J. Kim, and Y. Di, "Current transport in metal/hafnium oxide/silicon structure," IEEE Electron Device Letters, vol. 23, pp. 97-99, Feb 2002.
[113]S. W. Huang and J. G. Hwu, "Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by anodization followed by furnace annealing," IEEE Transactions on Electron Devices, vol. 50, pp. 1658-1664, Jul 2003.
[114]A. Kerber, E. Cartier, P. J. Roussel, L. Pantisano, T. Kauerauf, G. Groeseneken, H. E. Maes, and U. Schwalke, "Charge trapping and dielectric reliability of SiO2-Al2O3 gate stacks with TiN electrodes," IEEE Transactions on Electron Devices, vol. 50, pp. 1261-1269, May 2003.
[115]C. S. Kuo, J. F. Hsu, S. W. Huang, L. S. Lee, M. J. Tsai, and J. G. Hwu, "High-k Al2O3 gate dielectrics prepared by oxidation of aluminum film in nitric acid followed by high-temperature annealing," IEEE Transactions on Electron Devices, vol. 51, pp. 854-858, Jun 2004.
[116]T. P. Ma, H. M. Bu, X. W. Wang, L. Y. Song, W. He, M. Wang, H. H. Tseng, and P. J. Tobin, "Special reliability features for Hf-based high-k gate dielectrics," IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 36-44, Mar 2005.
[117]M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R. J. Luyken, W. Rosner, M. Grieb, and L. Risch, "Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications," Solid-State Electronics, vol. 49, pp. 716-720, May 2005.
[118]C. H. Hsu, M. T. Wang, and J. Y. M. Lee, "Electrical characteristics and reliability properties of metal-oxide-semiconductor field-effect transistors with La2O3 gate dielectric," Journal of Applied Physics, vol. 100, Oct 2006.
[119]P. D. Kirsch, M. A. Quevedo-Lopez, H. J. Li, Y. Senzaki, J. J. Peterson, S. C. Song, S. A. Krishnan, N. Moumen, J. Barnett, G. Bersuker, P. Y. Hung, B. H. Lee, T. Lafford, Q. Wang, D. Gay, and J. G. Ekerdt, "Nucleation and growth study of atomic layer deposited HfO2 gate dielectrics resulting in improved scaling and electron mobility," Journal of Applied Physics, vol. 99, Jan 2006.
[120]C. D. Young, D. Heh, S. V. Nadkarni, R. Choi, J. J. Peterson, J. Barnett, B. H. Lee, and G. Bersuker, "Electron trap generation in high-k gate stacks by constant voltage stress," IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 123-131, Jun 2006.
[121]C. H. Chang and J. G. Hwu, "Reliability of low-temperature-processing hafnium oxide gate dielectrics prepared by cost-effective nitric acid oxidation technique," IEEE Transactions on Device and Materials Reliability, vol. 7, pp. 611-616, Dec 2007.
[122]C. H. Chen, I. Y. K. Chang, J. Y. M. Lee, F. C. Chiu, Y. K. Chiouand, and T. B. Wu, "Reliability properties of metal-oxide-semiconductor capacitors using HfO2 high-kappa dielectric," Applied Physics Letters, vol. 91, Sep 2007.
[123]D. C. Hsu, M. T. Wang, J. Y. M. Lee, and P. C. Juan, "Electrical characteristics and reliability properties of metal-oxide-semiconductor field-effect transistors with ZrO2 gate dielectric," Journal of Applied Physics, vol. 101, May 2007.
[124]C. C. Yeh, T. P. Ma, N. Ramaswamy, N. Rocklein, D. Gealy, T. Graettinger, and K. Min, "Frenkel-Poole trap energy extraction of atomic layer deposited Al2O3 and HfxAlyO thin films," Applied Physics Letters, vol. 91, Sep 2007.
[125]C. H. Chang and J. G. Hwu, "Characteristics and reliability of hafnium oxide dielectric stacks with room temperature grown interfacial anodic oxide," IEEE Transactions on Device and Materials Reliability, vol. 9, pp. 215-221, Jun 2009.
[126]C. H. Chang and J. G. Hwu, "Trapping characteristics of Al2O3/HfO2/SiO2 stack structure prepared by low temperature in situ oxidation in dc sputtering," Journal of Applied Physics, vol. 105, May 2009.
[127]M. A. Negara, K. Cherkaoui, P. K. Hurley, C. D. Young, P. Majhi, W. Tsai, D. Bauza, and G. Ghibaudo, "Analysis of electron mobility in HfO2/TiN gate metal-oxide-semiconductor field effect transistors: The influence of HfO2 thickness, temperature, and oxide charge," Journal of Applied Physics, vol. 105, Jan 2009.
[128]Y. N. Novikov, V. A. Gritsenko, and K. A. Nasyrov, "Charge transport mechanism in amorphous alumina," Applied Physics Letters, vol. 94, Jun 2009.
[129]S. Y. Cha, H. J. Kim, and D. J. Choi, "Memory characteristics of Al2O3/LaAlO3/SiO2 multilayer structures with tunnel oxide thickness variation," Journal of Materials Science, vol. 45, pp. 5223-5227, Oct 2010.
[130]J. Kwon and Y. J. Chabal, "Thermal stability comparison of TaN on HfO2 and Al2O3," Applied Physics Letters, vol. 96, Apr 2010.
[131]B. Lee, G. Mordi, M. J. Kim, Y. J. Chabal, E. M. Vogel, R. M. Wallace, K. J. Cho, L. Colombo, and J. Kim, "Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices," Applied Physics Letters, vol. 97, Jul 2010.
[132]D. Liu, S. J. Clark, and J. Robertson, "Oxygen vacancy levels and electron transport in Al2O3," Applied Physics Letters, vol. 96, Jan 2010.
[133]D. J. Park, J. W. Lim, and B. O. Park, "Stabilization of Al2O3 gate oxide on plastic substrate for low temperature poly-silicon by in situ plasma treatment," Solid-State Electronics, vol. 54, pp. 323-326, Mar 2010.
[134]J. K. Park, Y. Park, S. K. Lim, J. S. Oh, M. S. Joo, K. Hong, and B. J. Cho, "Improvement of memory performance by high temperature annealing of the Al2O3 blocking layer in a charge-trap type flash memory device," Applied Physics Letters, vol. 96, May 2010.
[135]T. V. Perevalov, O. E. Tereshenko, V. A. Gritsenko, V. A. Pustovarov, A. P. Yelisseyev, C. Park, J. H. Han, and C. Lee, "Oxygen deficiency defects in amorphous Al2O3," Journal of Applied Physics, vol. 108, Jul 2010.
[136]R. Rao and F. Irrera, "Detrapping dynamics in Al2O3 metal-oxide-semiconductor," Journal of Applied Physics, vol. 107, May 2010.
[137]R. G. Southwick, J. Reed, C. Buu, R. Butler, G. Bersuker, and W. B. Knowlton, "Limitations of Poole-Frenkel conduction in bilayer HfO2/SiO2 MOS devices," IEEE Transactions on Device and Materials Reliability, vol. 10, pp. 201-207, Jun 2010.
[138]D. C. Suh, Y. D. Cho, S. W. Kim, D. H. Ko, Y. Lee, M. H. Cho, and J. Oh, "Improved thermal stability of Al2O3/HfO2/Al2O3 high-k gate dielectric stack on GaAs," Applied Physics Letters, vol. 96, Apr 2010.
[139]X. F. Zheng, W. D. Zhang, B. Govoreanu, D. R. Aguado, J. F. Zhang, and J. Van Houdt, "Energy and spatial distributions of electron traps throughout SiO2/Al2O3 stacks as the IPD in flash memory application," IEEE Transactions on Electron Devices, vol. 57, pp. 288-296, Jan 2010.
[140]G. Dingemans, N. M. Terlinden, M. A. Verheijen, M. C. M. van de Sanden, and W. M. M. Kessels, "Controlling the fixed charge and passivation properties of Si(100)/Al2O3 interfaces using ultrathin SiO2 interlayers synthesized by atomic layer deposition," Journal of Applied Physics, vol. 110, Nov 2011.
[141]C. C. Lin and J. G. Hwu, "Comparison of the reliability of thin Al2O3 gate dielectrics prepared by in situ oxidation of sputtered aluminum in oxygen ambient with and without nitric acid compensation," IEEE Transactions on Device and Materials Reliability, vol. 11, pp. 227-235, Jun 2011.
[142]Z. G. Xu, Z. L. Huo, C. X. Zhu, Y. X. Cui, M. Wang, Z. W. Zheng, J. Liu, Y. M. Wang, F. H. Li, and M. Liu, "Performance-improved nonvolatile memory with aluminum nanocrystals embedded in Al2O3 for high temperature applications," Journal of Applied Physics, vol. 110, Nov 2011.
[143]R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, "Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation," Applied Physics Letters, vol. 98, Mar 2011.
[144]B. Fallahazad, K. Lee, G. Lian, S. Kim, C. M. Corbet, D. A. Ferrer, L. Colombo, and E. Tutuc, "Scaling of Al2O3 dielectric for graphene field-effect transistors," Applied Physics Letters, vol. 100, Feb 2012.
[145]C. C. Lin and J. G. Hwu, "Investigation of nonuniformity phenomenon in nanoscale SiO2 and high-k gate dielectrics," Journal of Applied Physics, vol. 112, Sep 2012.
[146]Z. G. Xu, C. X. Zhu, Z. L. Huo, Y. X. Cui, Y. M. Wang, F. H. Li, and M. Liu, "Improved performance of non-volatile memory with Au-Al2O3 core-shell nanocrystals embedded in HfO2 matrix," Applied Physics Letters, vol. 100, May 2012.
[147]M. B. Gonzalez, J. M. Rafi, O. Beldarrain, M. Zabala, and F. Campabadal, "Charge trapping analysis of Al2O3 films deposited by atomic layer deposition using H2O or O-3 as oxidant," Journal of Vacuum Science &; Technology B, vol. 31, Jan 2013.
[148]C. C. Lin and J. G. Hwu, "Nitric acid compensated aluminum oxide dielectrics with improved negative bias reliability and positive bias temperature response," Journal of Applied Physics, vol. 113, Feb 2013.
[149]C. C. Lin and J. G. Hwu, "Performance enhancement of metal-oxide-semiconductor tunneling temperature sensors with nanoscale oxides by employing ultrathin Al2O3 high-k dielectrics," Nanoscale, vol. 5, pp. 8090-8097, 2013.
[150]E. Verrelli and D. Tsoukalas, "Investigation of the gate oxide leakage current of low temperature formed hafnium oxide films," Journal of Applied Physics, vol. 113, Mar 2013.
[151]H. S. Momose, S. Nakamura, T. Ohguro, T. Yoshitomi, E. Morifuji, T. Morimoto, Y. Katsumata, and H. Iwai, "Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET''s: Uniformity, reliability, and dopant penetration of the gate oxide," IEEE Transactions on Electron Devices, vol. 45, pp. 691-700, Mar 1998.
[152]S. W. Huang and J. G. Hwu, "Lateral nonuniformity of effective oxide charges in MOS capacitors with Al2O3 gate dielectrics," IEEE Transactions on Electron Devices, vol. 53, pp. 1608-1614, Jul 2006.
[153]J. C. Tseng and J. G. Hwu, "Lateral nonuniformity effects of border traps on the characteristics of metal-oxide-semiconductor field-effect transistors subjected to high-field stresses," IEEE Transactions on Electron Devices, vol. 55, pp. 1366-1372, Jun 2008.
[154]J. Y. Cheng and J. G. Hwu, "Characterization of edge fringing effect on the C-V responses from depletion to deep depletion of MOS(p) capacitors with ultrathin oxide and high-k dielectric," IEEE Transactions on Electron Devices, vol. 59, pp. 565-572, Mar 2012.
[155]Y. Naitou, A. Ando, H. Ogiso, S. Kamiyama, Y. Nara, K. Nakamura, H. Watanabe, and K. Yasutake, "Spatial fluctuation of dielectric properties in Hf-based high-k gate films studied by scanning capacitance microscopy," Applied Physics Letters, vol. 87, Dec 2005.
[156]Y. Naitou, A. Ando, H. Ogiso, S. Kamiyama, Y. Nara, K. Yasutake, and H. Watanabe, "Investigation of local charged defects within high-temperature annealed HfSiON/SiO(2) gate stacks by scanning capacitance spectroscopy," Journal of Applied Physics, vol. 101, Apr 2007.
[157]A. Berman, "Time-zero dielectric reliability test by a ramp method," in IEEE 19th Annual Reliability Physics Symposium, 1981, pp. 204-209.
[158]J. W. McPherson, R. B. Khamankar, and A. Shanware, "Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics," Journal of Applied Physics, vol. 88, pp. 5351-5359, Nov 2000.
[159]M. Denais, V. Huard, C. Parthasarathy, G. Ribes, F. Perrier, N. Revil, and A. Bravaix, "Interface trap generation and hole trapping under NBTI and PBTI in advanced CMOS technology with a 2-nm gate oxide," IEEE Transactions on Device and Materials Reliability, vol. 4, pp. 715-722, Dec 2004.
[160]M. A. Alam and S. Mahapatra, "A comprehensive model of PMOS NBTI degradation," Microelectronics Reliability, vol. 45, pp. 71-81, Jan 2005.
[161]V. Huard, M. Denais, and C. Parthasarathy, "NBTI degradation: From physical mechanisms to modelling," Microelectronics Reliability, vol. 46, pp. 1-23, Jan 2006.
[162]S. Zafar, Y. H. Kim, V. Narayanan, C. Cabral, V. Paruchuri, B. Doris, J. Stathis, A. Callegari, and M. Chudzik, "A comparative study of NBTI and PBTI (charge trapping) in SiO2/HfO2 stacks with FUSI, TiN, Re Gates," in Symposium on VLSI Technology, 2006, pp. 23-25.
[163]A. Kerber and E. A. Cartier, "Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks," IEEE Transactions on Device and Materials Reliability, vol. 9, pp. 147-162, Jun 2009.
[164]M. Sasaki, M. Ikeda, and K. Asada, "A temperature sensor with an inaccuracy of-1/+0.8 degrees C using 90-nm 1-V CMOS for online thermal monitoring of VLSI circuits," IEEE Transactions on Semiconductor Manufacturing, vol. 21, pp. 201-208, May 2008.
[165]G. C. M. Meijer, G. J. Wang, and F. Fruett, "Temperature sensors and voltage references implemented in CMOS technology," IEEE Sensors Journal, vol. 1, pp. 225-234, Oct 2001.
[166]K. A. A. Makinwa, "Smart temperature sensors in standard CMOS," Procedia Engineering, vol. 5, pp. 930-939, 2010.
[167]Y. H. Shih and J. G. Hwu, "An on-chip temperature sensor by utilizing a MOS tunneling diode," IEEE Electron Device Letters, vol. 22, pp. 299-301, Jun 2001.
[168]C. H. Lin and C. W. Liu, "Metal-insulator-semiconductor photodetectors," Sensors, vol. 10, pp. 8797-8826, Oct 2010.
[169]B. W. Mullins, S. F. Soares, K. A. McArdle, C. M. Wilson, and S. R. J. Brueck, "A simple high-speed Si Schottky photodiode," IEEE Photonics Technology Letters, vol. 3, pp. 360-362, Apr 1991.
[170]H. Dautet, P. Deschamps, B. Dion, A. D. Macgregor, D. Macsween, R. J. McIntyre, C. Trottier, and P. P. Webb, "Photon counting techniques with silicon avalanche photodiodes," Applied Optics, vol. 32, pp. 3894-3900, Jul 1993.
[171]M. Kyomasu, "Development of an integrated high speed silicon PIN photodiode sensor," IEEE Transactions on Electron Devices, vol. 42, pp. 1093-1099, Jun 1995.
[172]A. El Gamal and H. Eltoukhy, "CMOS image sensors," IEEE Circuits &; Devices Magazine, vol. 21, pp. 6-20, May-Jun 2005.
[173]F. Zhang, G. S. Sun, H. L. Huang, Z. Y. Wu, L. Wang, W. S. Zhao, X. F. Liu, G. G. Yan, L. Zheng, L. Dong, and Y. P. Zeng, "High-performance 4H-SiC-based metal-insulator-semiconductor ultraviolet photodetectors with SiO2 and Al2O3/SiO2 films," IEEE Electron Device Letters, vol. 32, pp. 1722-1724, Dec 2011.
[174]C. Y. Wang and J. G. Hwu, "Metal-oxide-semiconductor structure solar cell prepared by low-temperature (< 400 degrees C) anodization technique," Journal of the Electrochemical Society, vol. 156, pp. H181-H183, 2009.
[175]M. Kulakci, U. Serincan, and R. Turan, "Electroluminescence generated by a metal oxide semiconductor light emitting diode (MOS-LED) with Si nanocrystals embedded in SiO2 layers by ion implantation," Semiconductor Science and Technology, vol. 21, pp. 1527-1532, Dec 2006.
[176]M. Y. Doghish and F. D. Ho, "A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: a solar cell application," IEEE Transactions on Electron Devices, vol. 40, pp. 1446-1454, Aug 1993.
[177]M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang, and L. J. Chen, "Highly sensitive metal-insulator-semiconductor UV photodetectors based on ZnO/SiO2 core-shell nanowires," Journal of Materials Chemistry, vol. 22, pp. 8420-8425, 2012.
[178]P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. O. De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens, "Nanoscaled interdigitated electrode arrays for biochemical sensors," Sensors and Actuators B-Chemical, vol. 49, pp. 73-80, Jun 1998.
[179]M. Seto, C. Rochefort, S. de Jager, R. F. M. Hendriks, G. W. t Hooft, and M. B. van der Mark, "Low-leakage-current metal-insulator-semiconductor-insulator-metal photodetector on silicon with a SiO2 barrier-enhancement layer," Applied Physics Letters, vol. 75, pp. 1976-1978, Sep 1999.
[180]W. J. Wang, C. X. Shan, H. Zhu, F. Y. Ma, D. Z. Shen, X. W. Fan, and K. L. Choy, "Metal-insulator-semiconductor-insulator-metal structured titanium dioxide ultraviolet photodetector," Journal of Physics D-Applied Physics, vol. 43, Feb 2010.
[181]W. C. Lien, D. S. Tsai, D. H. Lien, D. G. Senesky, J. H. He, and A. P. Pisano, "4H-SiC metal-semiconductor-metal ultraviolet photodetectors in operation of 450 degrees C," IEEE Electron Device Letters, vol. 33, pp. 1586-1588, Nov 2012.
[182]C. J. Lee, Y. J. Kwon, C. H. Won, J. H. Lee, and S. H. Hahm, "Dual-wavelength sensitive AlGaN/GaN metal-insulator-semiconductor-insulator-metal ultraviolet sensor with balanced ultraviolet/visible rejection ratios," Applied Physics Letters, vol. 103, Sep 2013.
[183]P. Teerapanich, M. T. Z. Myint, C. M. Joseph, G. L. Hornyak, and J. Dutta, "Development and improvement of carbon nanotube-based ammonia gas sensors using ink-jet printed interdigitated electrodes," IEEE Transactions on Nanotechnology, vol. 12, pp. 255-262, Mar 2013.
[184]A. Pecora, L. Maiolo, M. Cuscuna, D. Simeone, A. Minotti, L. Mariucci, and G. Fortunato, "Low-temperature polysilicon thin film transistors on polyimide substrates for electronics on plastic," Solid-State Electronics, vol. 52, pp. 348-352, Mar 2008.
[185]W. Kern, "The evolution of silicon wafer cleaning technology," Journal of the Electrochemical Society, vol. 137, pp. 1887-1892, Jun 1990.
[186]H. T. Lue, C. Y. Liu, and T. Y. Tseng, "An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric," IEEE Electron Device Letters, vol. 23, pp. 553-555, Sep 2002.
[187]K. Yang, Y. C. King, and C. Hu, "Quantum effect in oxide thickness determination from capacitance measurement," in Symposium on VLSI Technology Digest of Technical Papers, 1999, pp. 77-78.
[188]K. J. Yang and C. M. Hu, "MOS capacitance measurements for high-leakage thin dielectrics," IEEE Transactions on Electron Devices, vol. 46, pp. 1500-1501, Jul 1999.
[189]D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3rd ed. New York: McGraw-Hill, 2003.
[190]H. Kobayashi, Asuha, O. Maida, M. Takahashi, and H. Iwasa, "Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density," Journal of Applied Physics, vol. 94, pp. 7328-7335, Dec 2003.
[191]C. H. Lin, B. C. Hsu, M. H. Lee, and C. W. Liu, "A comprehensive study of inversion current in MOS tunneling diodes," IEEE Transactions on Electron Devices, vol. 48, pp. 2125-2130, Sep 2001.
[192]S. A. Campbell, The Science and Engineering of Microelectronic Fabrication. New York: Oxford University Press, 2001.
[193]M. S. Liang, C. Chang, Y. T. Yeow, C. Hu, and R. W. Brodersen, "Creation and termination of substrate deep depletion in thin oxide MOS capacitors by charge tunneling," IEEE Electron Device Letters, vol. 4, pp. 350-352, 1983.
[194]D. M. Kim, S. J. Song, H. T. Kim, S. H. Song, D. J. Kim, K. S. Min, and D. W. Kang, "Deep-depletion high-frequency capacitance-voltage responses under photonic excitation and distribution of interface states in MOS capacitors," IEEE Transactions on Electron Devices, vol. 50, pp. 1131-1134, Apr 2003.
[195]C. Y. Liu, B. Y. Chen, and T. Y. Tseng, "Deep depletion phenomenon of SrTiO3 gate dielectric capacitor," Journal of Applied Physics, vol. 95, pp. 5602-5607, May 2004.
[196]J. Y. Cheng, C. T. Huang, and J. G. Hwu, "Comprehensive study on the deep depletion capacitance-voltage behavior for metal-oxide-semiconductor capacitor with ultrathin oxides," Journal of Applied Physics, vol. 106, Oct 2009.
[197]P. R. N. Childs, J. R. Greenwood, and C. A. Long, "Review of temperature measurement," Review of Scientific Instruments, vol. 71, pp. 2959-2978, Aug 2000.
[198]T. M. Wang, C. H. Chang, and J. G. Hwu, "Enhancement of temperature sensitivity for metal-oxide-semiconductor (MOS) tunneling temperature sensors by utilizing hafnium oxide (HfO2) film added on silicon dioxide (SiO2)," IEEE Sensors Journal, vol. 6, pp. 1468-1472, Dec 2006.
[199]C. Y. Wang and J. G. Hwu, "Characterization of stacked hafnium oxide HfO2/SiO2 metal-oxide-semiconductor tunneling temperature sensors," Journal of the Electrochemical Society, vol. 157, pp. J324-J328, 2010.
[200]J. M. Lee, I. T. Cho, J. H. Lee, S. G. Yoon, and I. H. Cho, "Enhancement of temperature sensitivity for metal-insulator-semiconductor temperature sensors by using Bi2Mg2/3Nb4/3O7 film," Japanese Journal of Applied Physics, vol. 51, Aug 2012.
[201]Z. Xu, M. Houssa, S. De Gendt, and M. Heyns, "Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks," Applied Physics Letters, vol. 80, pp. 1975-1977, Mar 2002.
[202]L. Liao, J. W. Bai, R. Cheng, Y. C. Lin, S. Jiang, Y. Huang, and X. F. Duan, "Top-Gated Graphene Nanoribbon Transistors with Ultrathin High-k Dielectrics," Nano Letters, vol. 10, pp. 1917-1921, May 2010.
[203]M. Z. Xu, C. H. Tan, Y. D. He, and Y. Y. Wang, "Analysis of the rate of change of inversion charge in thin insulator p-type Metal-Oxide-Semiconductor structures," Solid-State Electronics, vol. 38, pp. 1045-1049, May 1995.
[204]E. H. B. Nicollian, J. R., MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley, 1982.
[205]W. B. Kim, T. Matsumoto, and H. Kobayashi, "Ultrathin SiO2 layer with a low leakage current density formed with similar to 100% nitric acid vapor," Nanotechnology, vol. 21, Mar 2010.
[206]D. N. Pattanayak, J. G. Poksheva, R. W. Downing, and L. A. Akers, "Fringing field-effect in MOS devices," IEEE Transactions on Components Hybrids and Manufacturing Technology, vol. 5, pp. 127-131, 1982.
[207]C.-C. Lin, P.-L. Hsu, L. Lin, and J.-G. Hwu, "Investigation on edge fringing effect and oxide thickness dependence of inversion current in metal-oxide-semiconductor tunneling diodes with comb-shaped electrodes," Journal of Applied Physics, vol. 115, p. 124109, 2014.
[208]M. I. Vexler, A. F. Shulekin, C. Dieker, V. Zaporojtschenko, H. Zimmermann, W. Jager, I. V. Grekhov, and P. Seegebrecht, "Current model considering oxide thickness non-uniformity in a MOS tunnel structure," Solid-State Electronics, vol. 45, pp. 19-25, Jan 2001.
[209]C. C. Hong, W. R. Chen, and J. G. Hwu, "Local thinning-induced oxide nonuniformity effect on the tunneling current of ultrathin gate oxide," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &; Review Papers, vol. 41, pp. 1-4, Jan 2002.
[210]K. N. Yang, H. T. Huang, M. J. Chen, Y. M. Lin, M. C. Yu, S. M. Jang, D. C. H. Yu, and M. S. Liang, "Characterization and modeling of edge direct tunneling (EDT) leakage in ultrathin gate oxide MOSFETs," IEEE Transactions on Electron Devices, vol. 48, pp. 1159-1164, Jun 2001.
[211]C. Y. Yang and J. G. Hwu, "Photo-sensitivity enhancement of HfO2-based MOS photodiode with specific perimeter dependency due to edge fringing field effect," IEEE Sensors Journal, vol. 12, pp. 2313-2319, Jun 2012.
[212]S. Altindal, I. Dokme, M. M. Bulbul, N. Yalcin, and T. Serin, "The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range," Microelectronic Engineering, vol. 83, pp. 499-505, Mar 2006.
[213]I. Dokme and S. Altindal, "On the intersecting behaviour of experimental forward bias current-voltage (I-V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes at low temperatures," Semiconductor Science and Technology, vol. 21, pp. 1053-1058, Aug 2006.
[214]S. M. Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, W. C. Chao, Z. S. Chen, and C. Z. Wu, "Semitransparent field-effect transistors based on ZnO nanowire networks," IEEE Electron Device Letters, vol. 32, pp. 533-535, Apr 2011.
[215]J. G. Lu, P. C. Chang, and Z. Y. Fan, "Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications," Materials Science &; Engineering R-Reports, vol. 52, pp. 49-91, May 2006.
[216]Z. Y. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, "Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates," Nature Materials, vol. 8, pp. 648-653, Aug 2009.
[217]E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, "Nanowire solar cells," Annual Review of Materials Research, vol. 41, pp. 269-295, 2011.
[218]B. L. Williams, A. A. Taylor, B. G. Mendis, L. Phillips, L. Bowen, J. D. Major, and K. Durose, "Core-shell ITO/ZnO/CdS/CdTe nanowire solar cells," Applied Physics Letters, vol. 104, Feb 2014.
[219]M. Haruta and M. Date, "Advances in the catalysis of Au nanoparticles," Applied Catalysis a-General, vol. 222, pp. 427-437, Dec 2001.
[220]H. J. Niu and M. Y. Gao, "Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer," Angewandte Chemie-International Edition, vol. 45, pp. 6462-6466, 2006.
[221]Z. Y. Tang, N. A. Kotov, and M. Giersig, "Spontaneous organization of single CdTe nanoparticles into luminescent nanowires," Science, vol. 297, pp. 237-240, Jul 2002.
[222]Y. Ye, L. Dai, T. Sun, L. P. You, R. Zhu, J. Y. Gao, R. M. Peng, D. P. Yu, and G. G. Qin, "High-quality CdTe nanowires: synthesis, characterization, and application in photoresponse devices," Journal of Applied Physics, vol. 108, Aug 2010.
[223]X. Xie, S. Y. Kwok, Z. Z. Lu, Y. K. Liu, Y. L. Cao, L. B. Luo, J. A. Zapien, I. Bello, C. S. Lee, S. T. Lee, and W. Zhang, "Visible-NIR photodetectors based on CdTe nanoribbons," Nanoscale, vol. 4, pp. 2914-2919, 2012.
[224]S. Y. Li, X. Y. Li, and H. P. Zhao, "Synthesis and electrical properties of p-type CdTe nanowires," Micro &; Nano Letters, vol. 8, pp. 308-310, Jun 2013.
[225]J. Zhou, G. H. Chen, B. Nie, J. Zuo, J. Song, L. B. Luo, and Q. Yang, "Growth of multi-step shaped CdTe nanowires and a distinct photoelectric response in a single nanowire," Crystengcomm, vol. 15, pp. 6863-6869, 2013.
[226]T. Gandhi, K. S. Raja, and M. Misra, "Templated growth of cadmium zinc telluride (CZT) nanowires using pulsed-potentials in hot non-aqueous solution," Electrochimica Acta, vol. 51, pp. 5932-5942, Aug 2006.
[227]P. Ramasamy, S. I. Mamum, J. Jang, and J. Kim, "Dopant induced diameter tuning of Mn-doped CdTe nanorods in aqueous solution," Crystengcomm, vol. 15, pp. 2061-2066, 2013.
[228]C. Xie, L. B. Luo, L. H. Zeng, L. Zhu, J. J. Chen, B. Nie, J. G. Hu, Q. Li, C. Y. Wu, L. Wang, and J. S. Jie, "p-CdTe nanoribbon/n-silicon nanowires array heterojunctions: photovoltaic devices and zero-power photodetectors," Crystengcomm, vol. 14, pp. 7222-7228, 2012.
[229]S. M. Zhou, X. H. Zhang, X. M. Meng, S. K. Wu, and S. T. Lee, "Fabrication and characterization of Zn-doped CdTe nanowires," Applied Physics a-Materials Science &; Processing, vol. 81, pp. 1647-1650, Dec 2005.
[230]L. Zhu, J. Jie, D. Wu, L. Luo, C. Wu, Z. Zhu, Y. Yu, and L. Wang, "Synthesis of Sb-Doped p-Type CdTe Nanowires and Their Application as High-Performance Nano-Schottky Barrier Diodes," Journal of Nanoengineering and Nanomanufacturing, vol. 2, pp. 191-196, 2012.
[231]C. Xie, B. A. Nie, L. Zhu, L. H. Zeng, Y. Q. Yu, X. H. Wang, Q. L. Fang, L. B. Luo, and Y. C. Wu, "High-performance nonvolatile Al/AlOx/CdTe:Sb nanowire memory device," Nanotechnology, vol. 24, Sep 2013.
[232]L. B. Huang, S. Y. Lu, P. C. Chang, K. Banerjee, R. Hellwarth, and J. G. Lu, "Structural and optical verification of residual strain effect in single crystalline CdTe nanowires," Nano Research, vol. 7, pp. 228-235, Feb 2014.
[233]K. K. Chin, "p-Doping limit and donor compensation in CdTe polycrystalline thin film solar cells," Solar Energy Materials and Solar Cells, vol. 94, pp. 1627-1629, Oct 2010.
[234]H. Y. Shin and C. Y. Sun, "The exciton and edge emissions in CdTe crystals," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 52, pp. 78-83, Mar 1998.
[235]Y. Iwamura, S. Yamamori, H. Negishi, and M. Moriyama, "Deep levels of high-resistivity sb doped CdTe," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &; Review Papers, vol. 24, pp. 361-362, 1985.
[236]M. Soltani, M. Certier, R. Evrard, and E. Kartheuser, "Photoluminescence of CdTe doped with arsenic and antimony acceptors," Journal of Applied Physics, vol. 78, pp. 5626-5632, Nov 1995.
[237]P. Fochuk, R. Grill, Y. Nykonyuk, J. Krustok, N. Armani, Z. Zakharuk, M. Grossberg, and O. Panchuk, "High temperature properties of CdTe crystals, doped by sb," IEEE Transactions on Nuclear Science, vol. 54, pp. 763-768, Aug 2007.
[238]A. Castaldini, A. Cavallini, B. Fraboni, P. Fernandez, and J. Piqueras, "Deep energy levels in CdTe and CdZnTe," Journal of Applied Physics, vol. 83, pp. 2121-2126, Feb 1998.
[239]P. Bhattacharya, Semiconductor optoelectronic devices: Prentice-Hall, Inc., 1994.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔