跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 06:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李晉豪
研究生(外文):Jin-Hao Li
論文名稱:多輸入多輸出天線廣播通道中降低迴授量
論文名稱(外文):Feedback Reduction in MIMO Broadcast Channel
指導教授:蘇炫榮
口試委員:吳文榕陳光禎葉丙成洪樂文馮世邁
口試日期:2013-09-18
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:英文
論文頁數:126
中文關鍵詞:降低迴授;多用戶分散增益;束波形成技術
外文關鍵詞:Feedback reductionMulti-user diversityBeamforming.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在多使用者多傳輸天線傳輸多輸入天線下行廣播通道中,資料的傳輸速率可以透
過基地台的增加天線數量與排程機制來大量的增加。當使用者落在基地台的廣播範
圍,所有的使用者都收到來自於基地台的相同的資料。針對於多使用者多傳輸天線
與多接收天線系統,基地台具有Mt 根傳輸天線,K 總共有K 個使用者在此基地台涵
蓋範圍內且每個使用者具有Mr 根接收天線,所有的多工增益Mt 可以透過空間多重存
取技術或是迫零束波成形技術來達到。此外,當使用者數目遠超過傳送天線數目
K>>Mt,由於多使用者分散增益,速率總和會呈現MtloglogK 的成長趨勢。然而,上
述的結果都來自於傳輸端具有所有的通道消息,因此,通道迴授量會隨著使用者與
天線數量線性的增加。另一方面,透過選擇適當的調變與編碼來達到可靠的傳輸,
通道消息是非常重要的,因此,對網路系統而言,迴授量是非常大的。
此論文主要的貢獻在於考慮不同的系統應用,例如,多使用者多傳輸天線多接收
天線廣播通道,與多點廣播通道,與不同系統的排程演算法,提出降低迴授量的策
略來降低無線資源的浪費。透過分析,降低迴授量的方法,透過推導的多個閥值來
執行,數個閥值是藉由序量統計的觀念配合排成演算法來得到。模擬結果可知,在
廣播通道中,迴授量可以大量的被降低並且幾乎完美的速率總和都可以被達到。對
於多點廣播通道,迴授量也可以大量的被降低並且解碼成功的使用者的數量幾乎與
傳輸端具有完美的通道消息的情況是一樣的。此外,新的排程方法配合多閥值技術
也被提出,在異直性質瑞雷衰減通道中,不同使用者被基地台挑選到的的公平性,
迴授的量,與系統的速率和的關係也被討論。

In multiuser multiple-input multiple-output (MIMO) downlink broadcast channel, data rate can be tremendously increased by adding antennas and by scheduling algorithm at the base station (BS). When users are located in the broadcast area, the users receive the same data which is broadcasted from the BS. For the multiuser MIMO system with Mt transmit antennas and K users equipped with Mr antennas, the full multiplexing gain Mt can be achieved by using space-division multiple access schemes or zero-forcing beamforming. Moreover, in a large user regime K >> Mt, the sum rate
grows like Mt log logK due to multiuser diversity. However, all these results are based on the assumptions of full channel state information (CSI) at the transmitter, thus, the feedback load linearly increases with number of users
and number of antennas. On the other hand, CSI feedback is also very important in terms of proper selection of modulation and coding for achieving reliable transmission. Thus the aggregate feedback load in a network is large.
The main contributions of thesis are proposing feedback reduction strategies considering different applications, such as multiuser MIMO broadcast channel and multicast channel, and scheduling algorithms to avoid waste of
radio resource used for CSI feedback. Through analysis, we derive the feedback reduction methods which use multiple thresholds which are obtained through the concept of order statistics to exploit the scheduling mechanism. Simulations show that the feedback load can be reduced dramatically and
almost full sum rate performance can be achieved in broadcast channel. For multicast scenario, the feedback load can be reduced dramatically and number of decoded user is almost the same as the full CSI case. Moreover, a new
scheduling method with multi-threshold model is proposed and the relations among the fairness across users, the feedback load and the sum rate in heterogeneous Rayleigh fading channel are also investigated.

Contents
1 Introduction 1
1.1 Background . . . . . . . . .. . . . . . . . . . . 1
1.2 Overview of Thesis . . . . . . . . . . . . . . . 8
1.3 Notations . . . . . . . . . . . . . . . . . . . . 9
2 Reduction Method in MIMO Broadcast Channel using Orthogonal
Random Beamforming Approach ..........................10
2.1 System Model . . . . . . . . . . . . . . . . . . 14
2.2 The Multi-threshold Feedback Scheme . . . . . ... 19
2.2.1 Derivation of Multiple Thresholds . . . . . . . 20
2.2.2 Sum Rate Loss Analysis and Minimum Number of Regions
. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Multiuser Diversity Using the Multi-threshold Scheme ......................................................32
2.3 Bit Allocation and Feedback Load Analysis . . . . 34
2.3.1 Optimal Bit Allocation with Given Thresholds . .35
2.3.2 Fast Bit Allocation Method . . . . . . . . . . .37
2.3.3 Complexity Comparison . . . . . . . . . . . . . 42
2.3.4 Feedback Load Analysis . . . . . . . . . . . . 42
2.4 Numerical Results . . . . . . . . . . . . . . . . 43
2.5 Summary . . . . . . . . . . . . . . . . . . . . . 52
3 Reduction Method for Multiuser MIMO Zero-forcing Beamforming using Semi-orthogonal Scheduling Algorithm in Broadcast Channel.................................... 53
3.1 System Model . . . . . . . . . .. . . . . . . . . 55
3.2 Sum Rate Analysis Using SUS Algorithm . . . . . . 55
3.2.1 User Selection . . . . . . . . . .. . . . . . . 55
3.2.2 CQI Metric . . . . . . . . . . . . . . . . . . 57
3.2.3 Sum Rate Analysis . . . . . . . . . . . . . . . 59
3.3 Feedback Reduction Strategy . . . . . . . . . . 60
3.3.1 Derivation of Multiple Thresholds . . . . . . . 60
3.3.2 Feedback Load Analysis . . . . . . . .. . . . . 61
3.4 Numerical Results . . . . . . . . . . . . . . . . 62
3.5 Summary . . . . . . . . . . . . . . . . . . . . . 64
4 Feedback Reduction in MBMS System ..................68
4.1 System Model . . . . . . . . . . . . . . . . . . .70
4.2 Threshold Design Using Order Statistics . . . . . 72
4.3 Performance Analysis . . . . .. . . . . . . . . . 74
4.3.1 Feedback Load . . . . . . . . . . . . . . . . . 74
4.3.2 Performance Loss Analysis . . . . . . . . . . . 75
4.3.3 Determination of Threshold . . . . . . . . . . 78
4.4 Simulation Results . . . . . . . . . . . . . . . 79
4.5 Summary . . . . . . . . . . . . . . . . . . . . . 80
5 Feedback Policies for Heterogeneous Rayleigh Fading Channel with Finite Feedback .........................85
5.1 System Model . . . . . . . . . . . . . . . . . . 86
5.2 Proposed Algorithm Using Partial Derivative . . . 87
5.2.1 Greedy Algorithm . . . . . . . . . . . . . . . 87
5.2.2 Partial Derivative Algorithm . . . . . . . . . 88
5.3 Simulation Results . . . . . . .. . . . . . . . . 89
5.4 Summary . . . . . . . . . . . . . . . . . . . . . 91
6 Sum Rate and Fairness Tradeoff with Feedback Reduction in
Multiuser Heterogeneous Rayleigh Fading Channel...... 92
6.1 System Model . . . . . . . . . .. . . . . . . . . 94
6.1.1 Transmission and Feedback Procedure . . . . . . 94
6.2 Design of Multiple Thresholds . . . . . . . . . . 95
6.2.1 Proposed Scheduler . . . . . . . .... . . . . . 97
6.3 Performance Analysis . . . . . . . . . . . . . . 98
6.3.1 Sum Rate Analysis . . . . . . . . . . . . . . . 98
6.3.2 Fairness Analysis . . . . . . . . . . . . . . . 99
6.3.3 Feedback Load Analysis . . . . . . . . . . . . 100
6.4 Simulation Results . . . . . . . . . . . . . . 101
6.5 Summary . . .. . . . . . . . . . . . . . . . . . 105
7 Conclusions .......................................107
A Proof of Theorem 1 ................................109
B Proof of Theorem 2 ................................111
C Proof of Theorem 3 ................................113
D Proof of corollary ................................115
E Proof of Lemma 2 ..................................117
F Proof of Lemma 3 ..................................118
Bibliography ........................................120


[1] R. Knopp and P. Humblet, “Information capacity and power control in single cell multiuser communications,” IEEE Int. Conf. on Commun., June 1995.
[2] 3GPP, “Long term evolution, evolved universal terrestrial radio access (e-utra); physical layer; general description,” TS 36.201, vol. v1.0.0, March 2007.
[3] Air Interface for Fixed Broadband Wireless Access Systems. IEEE Std. 802.16-2004, 2004.
[4] M. Costa, “Writing on dirty paper,” IEEE Trans. on Inf. Theory, vol. 29, no. 3, pp. 439–441, May 1983.
[5] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the Gaussian multiple-input multiple-output broadcast channel,” IEEE Trans. on Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sept. 2006.
[6] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE J. Select. Areas Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.
[7] Evolved Universal Terrestrial Radio Access (E-UTRA); LTE Physical Layer-General Description (Release 8). 3GPP TSG RAN TS 36.201 Version 8.3.0, Sep. 2009.
[8] M. Sharif and B. Hassibi, “A comparison of time-sharing, dpc, and beamforming for mimo broadcast channel with many users,” vol. 55, no. 1, pp. 11–15, Jan. 2007.
[9] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna downlink channels with limited feedback and user selection,” IEEE J. Select. Areas Commun., vol. 25, no. 7, pp. 1478–1491, Sept. 2007.
[10] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” vol. 24, pp. 528–541, Mar. 2006.
[11] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channel with partial side information,” IEEE Trans. on Inf. Theory, vol. 51, no. 2, pp. 506–522, Feb. 2005.
[12] J. Diaz, O. Simeone, and Y. Bar-Ness, “Sum-rate of mimo broadcast channels with one bit feedback,” June 2006.
[13] D. Gesbert and M. S. Alouini, “How much feedback is multi-user diversity really worth?” IEEE Int. Conf. on Commun., pp. 234–238, June 2004.
[14] V. Hassel, M. S. Alouini, D. Gesbert, and G. E. Oien, “Exploiting multiuser diversity using multiple feedback thresholds,” IEEE VTC, vol. 2, pp. 1302–1306, May 2005.
[15] R. Zakhour and D. Gesbert, “A two-stage approach to feedback design in multi-user MIMO channels with limited channel state information,” IEEE PIMRC, vol. 24, pp. 1–5, Sept. 2007.
[16] C. Liang, N. Hock, and Z. Liren, “Feedback suppression in reliable multicast protocol,” IEEE Int. Conf. on Commun., vol. 2, p. 1436V1439, June 2000.
[17] M. Anastasopoulos and P. Cottis, “High altitude platform networks: a feedback suppression algorithm for reliable multicast/broadcast services,” IEEE Trans. on Wireless Communications, vol. 8, no. 4, pp. 1639–1643, April 2009.
[18] S. Yu, M. Peng, and W. Wang, “Adaptive traffic multiplexing for mbms in the umts system based on the scalable coding,” Communications and Networking in China, pp. 1–5, Oct. 2006.
[19] S. Lu, Y. Cai, L. Zhang, J. Li, P. Skov, C. Wang, and Z. He, “Channelaware frequency domain packet scheduling for mbms in lte,” IEEE VTC, pp. 1–5, April 2009.
[20] L. Rong, O. B. Haddada, and S. Elayoubi, “Analytical analysis of the coverage of a mbsfn ofdma network,” IEEE Globecom, pp. 1–5, April 2008.
[21] A. Alexiou, C. Bouras, V. Kokkinos, A. Papazois, and G. Tsichritzis, “Efficient mcs selection for mbsfn transmissions over lte networks,” IFIP Wireless Days, pp. 1–5, April 2010.
[22] S. Sohn, H.-S. Kim, and Y. Y. Kim, “A novel multicast scheme for feedback-based multicast services over wireless networks,” EURASIP Journal on Wireless Communications and Networking, Feb. 2013.
[23] T. B. Sorensen and M. R. Pons, “Performance evaluation of proportional fair scheduling algorithm with measured channels,” IEEE VTC, vol. 4, pp. 2580–2585, Sept. 2005.
[24] L. Yang, M. Kang, and M.-S. Alouini, “On the capacity-fairness tradeoff in multiuser diversity system,” IEEE Trans. on Vehicular Technology, vol. 56, no. 4, pp. 1901–1907, July 2005.
[25] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. on Inf. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.
[26] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna downlink channels with limited feedback and user selection,” IEEE J. Select. Areas Commun., vol. 25, no. 7, pp. 1478–1491, Sept. 2007.
[27] B. Hassibi and T. L. Marzetta, “Multiple-antennas and isotropically random unitary inputs: The received signal density in closed form,” IEEE Trans. on Inf. Theory, vol. 48, no. 6, pp. 1473–1484, June 2002.
[28] L. Yang, M. Kang, and M.-S. Alouini, “On the capacity-fairness tradeoff in multiuser diversity systems,” IEEE Trans. on Vehicular Technology, vol. 56, no. 4, pp. 1901–1907, July 2007.
[29] J.-H. Li and H.-J. Su, “Feedback reduction for MIMO broadcast channel with heterogeneous fading,” IEEE Symposium on Computers and Communications (ISCC), June 2011.
[30] D. A. Gore, R. W. Heath, and A. J. Paulraj, “Transmit selection in spatial multiplexing systems,” IEEE Commun. Lett., vol. 6, pp. 491–493, Nov. 2002.
[31] S. Ghahramani, Fundamentals of probability with stochastic processes, 3rd ed. Prentice Hall, 2005.
[32] D. K. Sharma, “Design of absolutely optimal quantizers for a wide class of distortion measures,” IEEE Trans. on Inf. Theory, vol. 24, no. 6, pp.693–702, Nov. 1978.
[33] C. Anton-Haro, “Optimal quantization schemes for orthogonal random beamforming-a cross-layer approach,” ICASSP, vol. 3, pp. 637–640,April 2007.
[34] H.-M. Hang and J.-J. Chen, “Source model for transform video coder and its application&;#8722;Part I: Fundamental theory,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 2, pp. 287–298, April 1997.
[35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
[36] M. Pugh and B. D. Rao, “Reduce feedback schemes using random beamforming in MIMO broadcast channels,” IEEE Trans. on Signal Processing, vol. 58, no. 3, pp. 1821–1832, Mar. 2010.
[37] T. Kang and H. Kim, “Optimal beam subset and user selection for orthogonal random beamforming,” IEEE Commun. Lett., vol. 12, no. 9,pp. 636–638, 2008.
[38] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. on Inf. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.
[39] M. Trivellato, F. Boccardi, and F. Tosato, “User selection schemes for MIMO broadcast channels with limited feedback,” IEEE VTC, pp. 2089–2093, April 2007.
[40] K. Ko, S. Jung, and J. Lee, “Hybrid MU-MISO scheduling with limited feedback using hierarchical codebooks,” IEEE Trans. on Communications, pp. 1–13, 2012.
[41] M. Kountouris, “Multiuser multi-antenna sysytems with limited feedback,” Ph. D dissertation, Jan. 2008.
[42] Y. Shao and J. Yuan, “A lower bound to the sum-rate of mimo broadcast channels with limited-rate feedback,” IEEE Int. Conf. on Commun., pp. 3674–3678, May 2008.
[43] G. U. Hwang and F. Ishizaki, “Design of a fair scheduler exploiting multiuser diversity with feedback information reduction,” IEEE Commun. Lett., vol. 12, no. 2, pp. 124–126, Feb. 2008.
[44] J. So, “Opportunistic feedback with multiple classes in wireless systems,” IEEE Commun. Lett., vol. 13, no. 5, pp. 384–386, June 2009.
[45] T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple antenna communication link in Rayleigh flat fading,” IEEE Trans. on Inf. Theory, vol. 45, pp. 139–157, 1999.
[46] H. Inaltekin, T. Samarasinghe, and J. S. Evans, “Rate optimal limited feedback policies for the MIMO downlink,” International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), May 2011.
[47] T. Samarasinghe, H. Inaltekin, and J. S. Evans, “Optimal selective feedback policies for opportunistic beamforming,” http://arxiv.org/abs/1107.4822, 2011.
[48] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic beamforming using dumb antennas,” IEEE Trans. on Inf. Theory, vol. 48, no. 6, pp. 1277–1294, Jun. 2002.
[49] I. Gradshteyn and I. Ryzhik, Table of Integrals, Series, and Products,7th ed. U.K.:Academic, 2007.
[50] O. Gascuel and G. Caraux, “Bounds on expectations of order statistics via extremal dependences,” Statist. Probab. Lett., pp. 143–148, Sept.1992.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top