|
[1] R. O. Schmidt, ”Multiple Emitter Location and Signal Parameter Estimation,” IEEE Trans. Antennas Propagat., vol. AP-34, No.3, March 1986. [2] R. Roy and T. Kailath, ”ESPRIT-Estimation of Signal Parameters Via Rotational Invariance Techniques,” IEEE on Acoustics. Speech. and Signal Processing, vol. 37, No.7, July 1989. [3] Y. Hua and T. K. Sarkar, ”Matrix Pencil Method for Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise,” IEEE on Acoustics. Speech. and Signal Processing, vol. 38, No.5, May 1990. [4] K. Karnati, S. Ebadi and X. Gong, ”Effects of Inter-Element Spacing on Mutual Coupling and Resonant Properties in Reflectarray Unit Cell Design,” IEEE on Radio and Wireless Symposium, 15-18 January 2012. [5] H. S. Lui, H. T. Hui, and M. S. Leong, ”A Note on the Mutual-Coupling Problems in Transmitting and Receiving Antenna Arrays,” IEEE Antennas and Propagation Magazine, Vol. 51, No.5, October 2009. [6] B. Friedlander and A. J. Weiss, ”Direction Finding in the Presence of Mutual Coupling,” IEEE Trans. Antennas Propagat., vol. 39, no. 3, March 1991. [7] Z. Ye and C. Liu, ”On the Resiliency of MUSIC Direction Finding Against Antenna Sensor Coupling,” IEEE Trans. Antennas Propagat., vol. 56, no. 2, February 2008. [8] C. M. Schmid, S. Schuster, R. Feger, and A. Stelzer, ”On the Effects of Calibration Errors and Mutual Coupling on the Beam Pattern of an Antenna Array,” IEEE Trans. Antennas Propagat., vol. 61, no. 8, August 2013. [9] T. J. Shan, M. Wax, and T. Kailath, ”On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Trans. Acoust. Speech Signal Process., vol. 33, no. 4, pp. 806-811, August 1985. [10] B. Liao, Z. G. Zhang, and S. C. Chan, ”A subspace-based method for DOA estimation of uniform linear array in the presence of mutual coupling,” in Proc. ISCAS, Paris, France, 2010, pp. 1879–1882. [11] B. Liao and S. C. Chan, ”DOA estimation of coherent signals for uniform linear arrays with mutual coupling,” in Proc. ISCAS, Rio de Janeiro, Brazil, 2011, pp. 377–380. [12] M. Zhang and Z. Zhu, ”Compensation for unknown mutual coupling in bearing estimation,”Int. J. Electron., vol. 75, pp. 965–971, 1993. [13] T. Svantesson, ”Modeling and estimation of mutual coupling in a uniform linear array of dipoles,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing, Mar. 1999, vol. 5, pp. 2961-2964. [14] J. Dai, W. Xu, and D. Zhao, ”Real-valued DOA estimation for uniform linear array with unknown mutual coupling,” J. Dai et al., Signal Processing 92, 2012, pp. 2056-2065. [15] H. T. Hui, ”A new definition of mutual impedance for application in dipole receiving antenna arrays,” IEEE Antennas and Wireless Propagation Letters, vol. 3, 2004. [16] H. T. Hui, H.P. Low, T. T. Zhang, and Y. L. Lu, ”Receiving mutual impedance between two parallel dipole antennas,” IEEE Antennas and Propagation , vol. 48, no. 4, August 2006. [17] B. H. Wang, H. T. Hui, and M. S. Leong, ”Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling,” IEEE Trans. Antennas Propagat., vol. 58, no. 3, March 2010. [18] C. H. Niow, and H. T. Hui, ”Improved noise modeling with mutual coupling in receiving antenna arrays for direction-of-arrival estimation,” IEEE Transactions on Wireless Communications, vol. 11, no. 4, pp. 1616-1621, 2012. [19] H. Steyskal and J. Herd, ”Mutual coupling compensation in small array antennas,”IEEE Trans. Antennas Propagat., vol. 38, no. 12, pp. 1971–1975, Dec. 1990. [20] C. Ludwig, ”Mutual Coupling, gain, and directivity of an array of two identical antennas,” IEEE Trans. Antennas Propagat., vol. 24, no. 6, pp. 837-841, November 1976. [21] F. Sellone, and A. Serra ”A novel online mutual coupling compensation algorithm for uniform and linear arrays,” IEEE Trans. Signal Processing, vol. 55, no. 2, pp. 560-573, February 2007. [22] W. J. Ding, and B. Su, ”A new method for DOA estimation in the presence of unknown mutual coupling of an antenna array,” accepted for presentation in 48th annual Asilomar conference on signals, systems, and computers. [23] C. A. Balanis, ”Antenna theory: analysis and design, 3rd edition,” Wiley, March 2005. [24] E. Tuncer, and B. Friedlander, ”Classical and modern direction-of-arrival estimation,”Elsevier Inc, March 2009. [25] X. G. Lv, and T. Z. Huang, ”A note on inversion of Toeplitz matrices,” Applied Mathematics Letters 20, pp. 1189-1193, 2007. [26] L. Rodman, and T. Shalom, ”On inversion of symmetric Toeplitz matrices,” Matrix Analysis and Applications, vol. 13, no. 2, pp. 530-549, April 1992. [27] H. S. Lui, Y. Yu, and H. T. Hui, ”Effect of mutual coupling on the performance of direction-of-arrival estimation of compact array,” IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, pp. 1-4, Toronto, Canada, 2010. [28] H. S. Lui, and H. T. Hui, ”Improved mutual coupling compensation in compact antenna arrays,” IET Microwave, Antennas, and Propagation, vol. 4, no. 10, pp. 1506-1516, 2010. [29] J. Zhu, and V. Eleftheriades, ”A simple approach to reducing mutual coupling in two closely-spaced electrically small antennas,” IEEE Antennas and Propagation Society International Symposium, 2010. [30] C. K. Mak, R. Rowell, and D. Murch, ”Isolation enhancement between two closely packed antennas,” IEEE Trans. Antennas Propagat., vol. 56, no. 11, November, 2008. [31] W. Chou and R. S. Adve, ”RF beamforming with closely spaced antennas,” 12th Canadian Workshop on Information Theory, 2011. [32] R. Janaswamy, ”Effect of element mutual coupling on the capacity of fixed length linear arrays,” IEEE Antenna and wireless propagation letters, vol. 1, 2002. [33] V. Jungnickel, V. Pohl, and C. V. Helmolt, ”Capacity of MIMO systems with closely spaced antennas,” IEEE communications letters, vol. 7, no. 8, August, 2003.
|