(3.238.7.202) 您好!臺灣時間:2021/02/25 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王康林
研究生(外文):KANG LIN WANG
論文名稱:具應用可適性之跨平台相互輔助推薦系統
論文名稱(外文):Application-Aware Cross Domains Selective Transfer Learning
指導教授:陳銘憲陳銘憲引用關係
指導教授(外文):Ming-Syan Chen
口試委員:黃俊龍葉彌妍鄧維光
口試委員(外文):Jiun-Long HuangMi-Yen YehWei-Guang Teng
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:37
中文關鍵詞:推薦系統跨平台最佳化
外文關鍵詞:recommendationrecommender systemscross domaincross multiple domains
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本碩士論文係介紹在多個平台上的推薦系統相互甫助的方式。以往的推薦系統多利用於單一平台上,方法多如利用該單一平台上的資訊,尋找相似的評分模式去進行對於使用者們尚未評分的項目進行預測與推薦。近年來, 諸多文獻開始探討關於是否能夠使用多個分別的平台,藉由交換資訊的方式達到對所有參與的平台皆有益處的跨平台推薦系統。 本論文係在討論該跨平台推薦系統,本論文除了回顧了之前方法的好處之外,並提出一新穎的方式進行跨平台推薦系統的優化。我們提出的方式不僅在效能上優於舊有的方式,且運算速度更快。

Traditionally, recommender systems make recommendations based on a single domain (e.g., movie or book domain) only. Recently, several cross-domain recommendation models have been proposed. Some of them proposed to leverage the common latent factors in the rating patterns of users-to-items co-clustering between domains and proposed to transfer the knowledge of such common latent factors to enhance the overall recommendation performance. However, these models often restrain themselves to transfer all the common knowledge between domains. Furthermore, these models often include all the domains in theirs participating domain set without selecting and evaluating the effect of including such domain into the transfer learning task. In this thesis, we propose a novel selective transfer learning model for the cross-multiple domains recommendation problem. This model not only can discover and apply the cross-multiple domains rating patterns to enhance the performance of recommendation on each of the participating domain, but also can select the most beneficial and efficient common knowledge then transfer the knowledge to each of the participating domain to improve the recommendation performance. In addition, we define a domain property index to evaluate the benefit of including each domain into the transfer learning task. Hence, this framework is able to discover and leverage the most influential common and cross-multiple domains rating patterns, and select an efficient participating domain set to enhance the recommendation performance. Extensive experiments on several real world datasets indicate that the proposed framework outperforms state-of-the-art methods for cross-domain recommendation task.

口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables ix
1. INTRODUCTION 1
2. PRELIMINARIES 5
2.1 Basic Model 5
2.2 Problem Definition 7
3. KNOWLEDGE TRANSFERRING BETWEEN DOMAINS 9
3.1 Transferring Knowledge In Two domains 9
3.2 Transferring Knowledge In Multiple Two Domains Setting 12
3.3 An Attempt To Transferring Knowledge Crossing All Multiple Domains 14
4. SELECTED TRANSFER LEARNING 16
4.1 More Knowledge Less Effect 16
4.2 Less can be More 17
4.3 Proposed Model 17
4.4 Model formulation 19
4.5 Optimization 20
4.6 Selection Algorithms 22
5 EXPERIMENTS 25
5.1 Dataset 25
5.2 Evaluation 26
5.3 Methods 27
5.4 Experiments 28
5.4.1 Two-Domain Transfer Learning 28
5.4.2 Random Domain Selection 29
5.4.3 Selective Transfer Learning 30
6 CONCLUSION AND FUTURE WORK 33



REFERENCES
[1] W. Knight, “Info-maniadents iq more than marijuana,” NewScientist. com news, 2005.
[2] E.Miller,“Communityclevernessrequired,”Nature,vol.455,p.1,2008. [3] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 6, pp. 734–749, 2005.
[4] Y. Koren, “Collaborative filtering with temporal dynamics,” Communi-
cations of the ACM, vol. 53, no. 4, pp. 89–97, 2010.
[5] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in artificial intelligence, vol. 2009, p. 4, 2009. [6] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock, “Methods and metrics for cold-start recommendations,” in Proceedings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2002, pp. 253–260.
[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
[8] B. Li, Q. Yang, and X. Xue, “Can movies and books collaborate? cross-
domain collaborative filtering for sparsity reduction.” in IJCAI, vol. 9,
2009, pp. 2052–2057.
[9] O. Moreno, B. Shapira, L. Rokach, and G. Shani, “Talmud: transfer
learning for multiple domains,” in Proceedings of the 21st ACM inter- nationalconferenceonInformationandknowledgemanagement. ACM, 2012, pp. 425–434.
[10] L. Hu, J. Cao, G. Xu, L. Cao, Z. Gu, and C. Zhu, “Personalized recommendation via cross-domain triadic factorization,” in Proceedings of the 22nd international conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2013, pp. 595–606.
[11] W. Pan, E. W. Xiang, N. N. Liu, and Q. Yang, “Transfer learning in collaborative filtering for sparsity reduction.” in AAAI, vol. 10, 2010, pp. 230–235.
[12] C.Ding,T.Li,W.Peng,andH.Park,“Orthogonalnonnegativematrixt- factorizations for clustering,” in Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2006, pp. 126–135.
[13] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen, “Scalable collaborative filtering using cluster-based smoothing,” in Pro- ceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2005, pp. 114–121.
[14] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of viral marketing,” ACM Transactions on the Web (TWEB), vol. 1, no. 1, p. 5, 2007.
[15] H.A.Kiers,J.M.TenBerge,andR.Bro,“Parafac2-parti.adirectfitting algorithm for the parafac2 model,” Journal of Chemometrics, vol. 13, no. 3-4, pp. 275–294, 1999.
[16] B.Li,Q.Yang,andX.Xue,“Transferlearningforcollaborativefiltering via a rating-matrix generative model,” in Proceedings of the 26th Annual International Conference on Machine Learning. ACM, 2009, pp. 617– 624.
[17] W. Pan, “Collaborative recommendation with auxiliary data: A transfer learning view,” arXiv preprint arXiv:1407.2919, 2014.
[18] S. Gao, H. Luo, D. Chen, S. Li, P. Gallinari, and J. Guo, “Cross-domain recommendation via cluster-level latent factor model,” in Machine Learning and Knowledge Discovery in Databases. Springer, 2013, pp. 161–176.
[19] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in neural information processing systems, 2001, pp. 556–562.
[20] C. Ding, T. Li, and M. I. Jordan, “Convex and semi-nonnegative matrix factorizations,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 32, no. 1, pp. 45–55, 2010.
[21] R. Kohavi and D. Sommerfield, “Feature subset selection using the wrapper method: Overfitting and dynamic search space topology.” in KDD, 1995, pp. 192–197.
[22] M. Long, J. Wang, G. Ding, D. Shen, and Q. Yang, “Transfer learning with graph co-regularization.” in AAAI, 2012.
[23] L. Si and R. Jin, “Flexible mixture model for collaborative filtering,” in ICML, vol. 3, 2003, pp. 704–711.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔