|
General [A1] D. Thomson, “Spectrum estimation and harmonic analysis,” Proceedings of the IEEE, vol. 70, no. 9, pp. 1055–1096, 1982, ISSN: 0018-9219. DOI: 10.1109/PROC.1982.12433. [A2] V. F. Pisarenko, “The retrieval of harmonics from a covariance function,” Geophysical Journal of the Royal Astronomical Society, vol. 33, no. 3, pp. 347–366, 1973, ISSN: 1365-246X. DOI: 10.1111/j.1365-246X.1973.tb03424.x. [Online]. Available: http://dx.doi.org/10.1111/j.1365- 246X.1973. tb03424.x. [A3] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals &;Amp; Systems (2Nd Ed.) Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996, ISBN: 0-13-814757-4. [A4] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing (2Nd Ed.) Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1999, ISBN: 0-13-754920-2. [A5] J. Stewart, Calculus, ser. Available 2010 Titles Enhanced Web Assign Series.Cengage Learning, 2007, ISBN: 9780495011606. [Online]. Available: http://books.google.com.tw/books?id=jBD0yTh64wAC. [A6] R. A. Horn and C. R. Johnson, Eds., Matrix Analysis. New York, NY, USA: CambridgeUniversity Press, 1986, ISBN: 0-521-30586-1. Number Theory [B1] I. Niven, H. L. Montgomery, and H. S. Zuckerman, An introduction to the theoryof numbers, English, 5th ed. New York : Wiley, 1991, Includes indexes, ISBN:0471625469. [B2] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, English, 4th ed., 2nd (corr.) impression. Clarendon Press Oxford, 1960, xvi, 421 p. [B3] J. Wrench John W., “Evaluation of Artin’s constant and the twin-prime constant,” English, Mathematics of Computation, vol. 15, no. 76, pp. 396–398, 1961, ISSN:00255718. [Online]. Available: http://www.jstor.org/stable/2003029. Ramanujan Sum [C1] S. Ramanujan, “On certain trigonometric sums and their applications,” Trans. Cambridge Philos. Soc., vol. 22, pp. 259–276, 1918. [C2] Laszlo Toth. (2007). Ramanujan sum, [Online]. Available: http://ttk.pte. hu/matek/ltoth/Ramanujan07.pdf. [C3] R. D. von Sterneck. Sitzungsber, Duke Mathematical Journal, pp. 1567–1601,1902. [C4] M. Planat, H. C. Rosu, and S. Perrine, “Ramanujan sums for signal processing of low frequency noise,” Phys. Rev. E, vol. 66, 2002. [C5] P. Haukkanen, “Discrete Ramanujan-Fourier transform of even functions (mod r),” Indian J. Math. Math. Sci., vol. 3, no. 1, pp. 75–80, 2007. [C6] L. Toth and P. Haukkanen, “The discrete Fourier transform of r-even functions,” Acta Univ. Sapientiae, Mathematica, vol. 3, no. 1, pp. 5–25, 2011. [C7] V. Laohakosol, P. Ruengsinsub, and N. Pabhapote, “Ramanujan sums for signal processing of low frequency noise,” Phys. Rev. E, 2006. [C8] D. R. Anderson and T. M. Apostol, “The evaluation of Ramanujan’s sum and generalizations,” Duke Mathematical Journal, vol. 20, no. 2, pp. 211–216, Jun. 1953. DOI: 10.1215/S0012-7094-53-02021-3. [Online]. Available: http: //dx.doi.org/10.1215/S0012-7094-53-02021-3. [C9] T. M. Apostol, “Arithmetical properties of generalized Ramanujan sums,” Pacific J. of Mathematics, vol. 41, no. 2, 1972. [C10] P. J. McCarthy, “A generalization of Smith’s determinant,” Canad. Math. Bull., vol. 29, no. 1, pp. 109–113, 1986. [C11] S. Samadi, M. O. Ahmad, and M. N. S. Swamy, “Ramanujan sums and discrete Fourier transform,” IEEE Signal Process. Lett., vol. 12, no. 4, pp. 293–296, 2005. [C12] S.-C. Pei and K.-W. Chang, “Odd Ramanujan sums of complex roots of unity,” IEEE Signal Process. Lett., vol. 14, no. 1, pp. 20–23, 2007. [C13] C. F. Fowler, S. R. Garcia, and G. Karaali, “Ramanujan sums as supercharacters,” arXiv, 2012. [C14] L. Sugavaneswaran, S. Xie, K. Umapathy, and S. Krishnon, “Time-frequency analysis via Ramanujan sums,” IEEE Signal Process. Lett., vol. 19, no. 6, pp. 352–355, 2012. [C15] L. T. Mainardi, L. Pattini, and S. Cerutti, “Application of the Ramanujan Fourier transform for the analysis of secondary structure content in amino acid sequences,” Meth. Inf. Med., vol. 46, no. 2, pp. 126–129, 2007. [C16] L. T. Mainardi, M. Bertinelli, and R. Sassi, “Analysis of T-wave alternans using the Ramanujan sums,” Comput. Cardiol., vol. 35, pp. 605–608, 2008. [C17] M. Lagha and M. Bensebti, “Doppler spectrum estimation by Ramanujsn-Fourier transform (RFT),” Digital Signal Process., vol. 19, no. 5, pp. 843–851, 2009. [C18] G. Chen, S. Kishnan, and T. B. Bui, “Matrix-based Ramanujan-sums transforms,” IEEE Signal Process. Lett., vol. 20, no. 10, 2013. [C19] G. Y. Chen, S. Krishnon, W. Liu, and W. F. Xie, “Ramanujan sums for sparse signal analysis,” Proc. Minth Int. Conf. Intelligent Computing (ICIC), 2013. [C20] X. Guo, S. Huang, Z. Wang, and L. Zhou, “Research on Ramanujan-FMT modulation and the efficient implementation algorithm,” Journal of Beijing University of Aeronautics and Astronautics, 2013. [C21] G. Chen, S. Krishnan, and T. D. Bui, “Ramanujan sums for image pattern analysis,” International Journal of Wavelets, Multiresolution and Information Processing, vol. 12, no. 01, p. 1 450 003, 2014. [Online]. Available: http://spectrum.library.concordia.ca/978239/. [C22] M. Planat, M. Minarovjech, and M. Saniga, “Ramanujan sums analysis of longperiod sequences and 1/f noise,” Mathematical Physics, 2009. [C23] G. Y. Chen, S. Krishnon, W. Liu, and W. F. Xie, “Ramanujan sums-wavelet transform for signal analysis,” Proc. Int. Conf. on Wavelet Anal. and Pattern Recognition (ICWAPR), 2013. [C24] I. Korkee and P. Haukkanen, “On a general form of meet matrices associated with incidence functions,” Linear and Multilinear Algebra, vol. 53, no. 5, pp. 309–321, 2005. Pade Approximation and Prony Analysis [D1] L. Perotti, D. Vrinceanu, and D. Bessis, “Beyond the Fourier Transform: Signal Symmetry Breaking in the Complex Plane,” IEEE Signal Process. Lett., vol. 19, no. 12, pp. 865–867, 2012. [D2] C. Brezinski, History of Continued Fractions and Pade Approximants. Springer-Verlag, 1991. [D3] R. Prony, “Essai Experimental et Analytique, etc.,” Paris J. l’Ecole Polytechnique, vol. 1, pp. 24–76, 1795. [D4] T. J. Ulrych and R. W. Clayton, “Time series modelling and maximum entropy,” Physics of the Earth and Planetary Interiors, vol. 12, no. 2–3, pp. 188 –200, 1976, ISSN: 0031-9201. DOI: http : / / dx . doi . org / 10 . 1016 / 0031 - 9201(76 ) 90047-9. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/0031920176900479. [D5] A. Nuttall, N. U. S. C. NEWPORTRI., and N. U. S. C. U. N. L. Laboratory, Spectral Analysis of a Univariate Process with Bad Data Points, Via Maximum Entropy, and Linear Predictive Techniques, ser. NUSC technical report. New London Laboratory, Naval Underwater Systems Center, 1976. [Online]. Available: http://books.google.com.tw/books?id=7gUJywAACAAJ. [D6] G. H. Golub and C. Van Loan, “An analysis of the total least squares problem,” Ithaca, NY, USA, Tech. Rep., 1980. [D7] M. Rahman and K.-B. Yu, “Total least squares approach for frequency estimation using linear prediction,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 35, no. 10, pp. 1440–1454, 1987, ISSN: 0096-3518. DOI: 10. 1109/TASSP.1987.1165059. [D8] D. Tufts and R. Kumaresan, “Singular value decomposition and improved frequency estimation using linear prediction,” Acoustics, Speech and Signal Processing, IEEE Transactions on, vol. 30, no. 4, pp. 671–675, 1982, ISSN: 0096-3518. DOI: 10.1109/TASSP.1982.1163927. [D9] L. Weiss and R. McDonough, “Prony’s Method, Z-Transforms, and Pade Approximation,” SIAM Review, vol. 5, no. 2, pp. 145–149, 1963. DOI: 10.1137/ 1005035. eprint: http://epubs.siam.org/doi/pdf/10.1137/1005035. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1005035. [D10] J Gilewicz and B Truong-Van, “Froissart doublets in the Pade approximation and noise,” CNRS Marseille. Cent. Phys. Theor., Marseille, Tech. Rep. CPT-2014. M-CPT-2014, 1987. [D11] J. Gilewicz and Y. Kryakin, “Froissart doublets in Pade approximation in the case of polynomial noise,” Journal of Computational and Applied Mathematics, vol. 153, no. 1–2, pp. 235 –242, 2003, Proceedings of the 6th International Symposium on Orthogonal Poly nomials, Special Functions and their Applications, Rome, Italy, 18-22 June 2001, ISSN: 0377-0427. DOI: http://dx.doi.org/10 . 1016 / S0377 - 0427(02 ) 00674 - X. [Online]. Available: http : / / www .sciencedirect.com/science/article/pii/S037704270200674X. [D12] P. Barone, “On the distribution of poles of Pade approximants to the Z-transform of complex Gaussian white noise,” Journal of Approximation Theory, vol. 132, no. 2, pp. 224–240, 2005, ISSN: 0021-9045. DOI: http://dx.doi.org/10.1016/j.jat.2004.10.014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S002190450400187X. [D13] D. Bessis and L. Perotti, “Universal analytic properties of noise. Introducing the J-Matrix formulation,” J. Phys., vol. 42, no. A365202, p. 15, 2009. Other [E1] M. Elfeky, W. Aref, and A. Elmagarmid, “Periodicity detection in time series databases,” Knowledge and Data Engineering, IEEE Transactions on, vol. 17, no. 7, pp. 875–887, 2005, ISSN: 1041-4347. DOI: 10.1109/TKDE.2005.114. [E2] ——, “Warp: time warping for periodicity detection,” in Data Mining, Fifth IEEE International Conference on, 2005, 8 pp.–. DOI: 10.1109/ICDM.2005.152. [E3] S. Papadimitriou, A. Brockwell, and C. Faloutsos, “Adaptive, hands-off stream mining,” in Proceedings of the 29th International Conference on Very Large Data Bases - Volume 29, ser. VLDB ’03, Berlin, Germany: VLDB Endowment, 2003, pp. 560–571, ISBN: 0-12-722442-4. [Online]. Available: http://dl.acm.org/citation.cfm?id=1315451.1315500. [E4] F. Rasheed, M. Alshalalfa, and R. Alhajj, “Efficient periodicity mining in time series databases using suffix trees,” Knowledge and Data Engineering, IEEE Transactions on, vol. 23, no. 1, pp. 79–94, 2011, ISSN: 1041-4347. DOI: 10.1109/TKDE.2010.76. [E5] N Levinson, “The Wiener RMS (root mean square) error criterion in filter design and prediction,” 1947. [E6] W. F. Trench, “An algorithm for the inversion of finite Toeplitz matrices,” Journal of the Society for Industrial &; Applied Mathematics, vol. 12, no. 3, pp. 515–522, 1964. [E7] D. A. Bini, L. Gemignani, and V. Y. Pan, “Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations,” English, Numerische Mathematik, vol. 100, no. 3, pp. 373–408, 2005, ISSN: 0029-599X. DOI: 10.1007/s00211-005-0595-4. [Online]. Available: http://dx.doi.org/10.1007/s00211-005-0595-4. [E8] A. Eisinberg and G. Fedele, “On the inversion of the Vandermonde matrix,” Applied Mathematics and Computation, vol. 174, no. 2, pp. 1384 –1397, 2006, ISSN: 0096-3003. DOI: http://dx.doi.org/10.1016/j.amc.2005.06.014. [On-line]. Available: http://www.sciencedirect.com/science/article/pii/S0096300305005576. [E9] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955, ISSN: 1931-9193. DOI: 10.1002/nav.3800020109. [Online]. Available: http://dx.doi.org/10.1002/nav.3800020109. [E10] G. A. Korsah, A. T. Stentz, and M. B. Dias, “The dynamic Hungarian algorithm for the assignment problem with changing costs,” Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27, 2007. [E11] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 5, pp. 603–619, 2002, ISSN: 0162-8828. DOI: 10.1109/34.1000236. [E12] B. Finkston. (2006). Mean shift clustering, [Online]. Available: http://www.mathworks . com / matlabcentral / fileexchange / 10161 - mean - shift - clustering/content/MeanShiftCluster.m.199
|