(3.231.29.122) 您好!臺灣時間:2021/02/26 00:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃啟華
研究生(外文):Chi-Hua Huang
論文名稱:差分振幅及相移鍵控用於非同調無線通訊環境下之分集傳送及接收
論文名稱(外文):Diversity Transmission and Reception of DAPSK Over Noncoherent Wireless Communication Channels
指導教授:鐘嘉德鐘嘉德引用關係
口試委員:林茂昭蘇炫榮王晉良王蒞君李志鵬林嘉慶陳曉華馬杰
口試日期:2014-05-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:136
中文關鍵詞:放大轉送合作式分集合作式中繼差分振幅及相移鍵控差分偵測差分空時調變頻率選擇性瑞雷衰退通道多重輸入輸出中上衰退通道正交分頻多工萊斯衰退通道
外文關鍵詞:Amplify-and-forward (AF)cooperative diversitycooperative relayingdifferential amplitude and phase shift keying (DAPSK)differential detectiondifferential space-time modulation (DSTM)frequency-selective Rayleigh fading channelmultiple-input multiple-output (MIMO)Nakagami-m fading channelorthogonal frequency-division multiplexing (OFDM)Rician fading channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無線通訊裡,多重輸入輸出技術藉由在傳送端及接收端架設多根天線能增進資料傳輸量及可靠度。而近年來,合作式中繼技術經由使用者之間的互相合作能加大基地台覆蓋率及可實現分散式空間分集。除了多重輸入輸出及合作式中繼技術外,正交分頻多工也是一極具競爭力的技術,因為此技術能非常有效地利用頻譜及易於與其他現存的通訊技術做結合,所以被廣泛採用於現今及未來的無線通訊系統標準裡。過去關於多重輸入輸出、正交分頻多工及合作式中繼系統的研究大部分著重於同調偵測,其中這些研究需先假定接收端可以獲得所有傳輸通道的精確通道狀態資訊包含瞬時通道響應、訊號雜訊功率比及平均通道統計特性。然而在快速時變環境下,所有傳輸通道的精確通道狀態資訊是非常難以獲得,因此執行同調偵測變得不可行。為了減少對於精確通道狀態資訊的需求,一具有高功率效率的差分調變技術,名為差分振幅及相移鍵控已被提出並且在點對點通訊裡有著相當廣泛的研究及討論。差分振幅及相移鍵控採用同心圓狀的星座點架構,裡面包含多層的環,每一層環上都有相同密度的信號點。利用差分編碼的方式,差分振幅及相移鍵控將振幅符元及相位符元分別負載於相鄰傳送符元的振幅比及相位差。藉由觀察兩個相鄰接收信號,可在不需要任何的通道狀態資訊下完成差分振幅及相移鍵控的差分偵測。在本論文中,我們將差分振幅及相移鍵控應用於非同調多重輸入輸出、正交分頻多工及放大轉送多中繼站系統並且設計差分振幅及相移鍵控的分集傳送及接收方式以進一步改善這些系統的錯誤率效能及簡化接收機實現。
在非同調多重輸入輸出系統中,我們提出了一種使用分集編碼式差分振幅及相移鍵控的新式差分空時調變,其在傳送天線有著低且固定的峰均功率比。最大相似度接收機及近似最大相似度接收機在獨立非同分佈時間相關性萊斯衰退通道下已發展出來得以對分集編碼式差分振幅及相移鍵控信號進行差分偵測。其中,最大相似度接收機需要平均通道動差、接收信號雜訊功率比及平均雜訊功率等通道狀態資訊來實現,而近似最大相似度接收機不需要除了平均雜訊功率以外的通道狀態資訊,因此相較之下更容易實現。近似最大相似度接收機的位元錯誤率上限在獨立非同分佈時間相關性萊斯衰退通道下已完成分析。除此之外,在獨立非同分佈非時變瑞雷衰退通道及高接收信號雜訊功率比的情況下,一個近似位元錯誤率上限也已推導出來。利用此近似錯誤率,我們發展出了決定分集編碼系數的準則。對於多接收天線的非同調正交分頻多工系統而言,憑藉均勻交錯子載波群組化方式可將所有正交分頻多工系統上較高相關性的子載波劃分成擁有較小相關性的子載波群組,每一個群組可視為有著較小相關性的多重輸入輸出系統。因此先前發展出來的分集編碼式差分振幅及相移鍵控和近似最大相似度接收機可直接應用於非同調正交分頻多工系統以開發頻率及天線分集。最後,在非同調放大轉送多中繼站系統中使用差分振幅及相移鍵控,相等式增益接收機及加權式增益接收機在此發展出來,能以非同調的方式結合來自於源頭端及中繼站的信號進而達到合作式分集的效果。相等式增益接收機不需要任何的通道狀態資訊,然而加權式增益接收機則需要源頭端至中繼站及中繼站至目的端的平均信號雜訊比。無論存不存在信號雜訊功率比的估測錯誤,一個整合相等式增益接收機及加權式增益接收機的位元錯誤機率上限的一般表示式在獨立非同分佈非時變萊斯及中上衰退通道下已完成推導。數值與模擬結果驗證了我們推導出的錯誤率上限的正確性及緊密性並且展示了所提出的差分振幅及相移鍵控系統能提供相較於先前提到的非同調無線通訊系統更好的錯誤率效能。

In a wireless communication link, multiple-input multiple-output (MIMO) techniques have been developed to increase throughput and reliability of data transmission by employing multiple antennas at the transmitter and the receiver sides. Recently, cooperative relaying techniques have been proposed to enlarge the cellular coverage and realize distributed spatial diversity in terms of user cooperation. Other than MIMO and cooperative relaying techniques, orthogonal frequency-division multiplexing (OFDM) is also a promising technique and widely adopted in many recent and future wireless communication standards since it can make very efficient use of available spectrum and be easily combined with other existing communication techniques. Most of past studies on MIMO, OFDM, and cooperative relaying systems focus on coherent detection, which is based on the assumption that perfect channel state information (CSI) of all transmission links including instantaneous channel impulse response, signal-to-noise power ratio (SNR), and average channel statistics is available at the receiver. However, in fast time-varying environment, the sufficiently accurate CSI of all transmission links is very difficult to obtain, and thus performing coherent detection may not be feasible. In order to reduce the requirement for perfect CSI, a differential modulation technique with high power efficiency, namely differential amplitude and phase shift keying (DAPSK), has been proposed and well studied in point-to-point communications. DAPSK employs a star constellation with multiple concentric amplitude rings, each containing the same number of uniformly distributed phasors, and sequentially encodes information onto the amplitude ratio and phase difference between currently and previously transmitted symbols. By operating two consecutively received signals, the differential detection of DAPSK can be achieved without any CSI. In this thesis, we apply DAPSK into the noncoherent MIMO, OFDM, and multiple-relay systems and design the diversity transmission and reception of DAPSK for these noncoherent wireless communication systems to improve the system error performance and simplify the receiver implementation.
In the noncoherent MIMO system, a new differential space-time modulation (DSTM) using diversity-encoded DAPSK is proposed with low and fixed peak-to-average power ratio at each transmit antenna. The maximum-likelihood (ML) and an asymptotic ML (AML) receiver are developed for differentially detecting diversity-encoded DAPSK signals over independent but not identically distributed (inid) time-correlated Rician fading channels. The knowledge of CSI including average channel moments, received SNRs, and average noise power is required for realizing the ML receiver, while the AML receiver is devoid of any CSI except average noise power and thereby much easier to implement. The bit error probability (BEP) upper bound is analyzed for the AML receiver over inid time-correlated Rician fading channels. Particularly, an approximate BEP upper bound of the AML receiver is also derived for inid time-invariant Rayleigh fading channels with large received SNRs. By virtue of this approximate bound, a design criterion is developed to determine the appropriate diversity encoding coefficients for the proposed DAPSK MIMO system. For the noncoherent OFDM system with multiple receive antennas, resort to uniformly interleaved subcarrier grouping can divide all correlated subcarriers of an OFDM system into the nonoverlapping groups containing lightly correlated subcarriers. Thus, the previously developed diversity-encoded DAPSK and the corresponding AML receiver can be directly applied by treating each group as a MIMO system with lightly correlated transmit antennas so that both frequency diversity and spatial antenna diversity can be achieved. Finally, in the noncoherent amplify-and-forward multiple-relay system using DAPSK, an equal gain combining (EGC) receiver and a weighted gain combining (WGC) receiver are developed to noncoherently combine received signals from direct and multiple relay links and thereby achieve cooperative diversity. The EGC receiver operates without any CSI, while the knowledge of average SNRs on source-relay and relay-destination links is required for realizing the WGC receiver. A unified expression of BEP upper bound is analytically derived for both receivers over inid time-invariant Rician and Nakagami-m fading channels with or without link SNR estimation errors. Numerical and simulation results verify the correctness and tightness of the derived BEP bounds and show that the proposed DAPSK systems can provide improved error performance over the existing works on the above-mentioned noncoherent wireless communication systems.

Abstract i
Contents iv
List of Figures v
List of Tables vi
Abbreviations vii
Notations x
1 Introduction 1
1.1 Review of MIMO Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Coherent Space-Time Codes . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Noncoherent Space-Time Codes . . . . . . . . . . . . . . . . . . . . 5
1.2 Review of OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Review of Multiple-Relay Systems . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Review of DAPSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Thesis Motivation, Overview, and Contributions . . . . . . . . . . . . . . . . 17
2 DAPSK in Noncherent MIMO Systems 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Receiver Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 ML Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 AML Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.3 EGC Receiver for Diversity-Phase-Encoded DAPSK . . . . . . . . . 30
2.4 Error Probability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 BEP Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.2 Approximate BEP Upper Bound Under Rayleigh Fading . . . . . . . 36
2.4.3 BEP Upper Bound for EGC Receiver . . . . . . . . . . . . . . . . . 38
2.5 Diversity Encoding Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.1 BEP Characteristics of Diversity-Encoded DAPSK and DPSK Systems 45
2.6.2 Comparison With Various Systems Using DNUSTM and DUSTM
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 DAPSK in Noncherent OFDM Systems 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Receiver Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Error Probability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 BEP Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.2 PEP Under Frequency-Selective Rayleigh Fading . . . . . . . . . . . 66
3.4.3 Approximate BEP Upper Bound . . . . . . . . . . . . . . . . . . . . 68
3.5 Diversity Encoding Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.1 BEP Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6.3 PAPR Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 DAPSK in Noncoherent Multiple-Relay Systems 78
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 System and Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Receiver Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 EGC Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 WGC Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Error Probability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 BEP Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2 Characteristic Functions Under Rician and Nakagami-m Fading . . . 88
4.5 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.1 BEP Characteristics of DAPSK and DPSK Systems Using FRG Mechanism
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.2 Comparison With Coherent QAM System . . . . . . . . . . . . . . . 99
4.5.3 Comparison of Various Systems Using FRG and VRG Mechanisms . 101
4.5.4 Comparison With Noncoherent DF System . . . . . . . . . . . . . . 105
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5 Conclusion 108
Bibliography 111
Appendix A: Derivation of (2.20) 123
Appendix B: Derivation of (2.23) 125
Appendix C: Derivations of (2.26) and (2.27) 128
Appendix D: Derivation of (2.28) 130
Appendix E: Derivations of (4.19) and (4.20) 132
Appendix F: Derivations of (4.21) and (4.22) 133
List of Publications 135

[1] T. K. Y. Lo, “Maximum ratio transmission,” IEEE Trans. Commun., vol. 47, no. 10, pp. 1458–1461, Oct. 1999.
[2] D. J. Love, R. W. Health, and T. Strohmer, “Grassmannian beamforming for multiple-input multiple-output wireless systems,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.
[3] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans.
Inf. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.
[4] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
[5] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456–1467, Jul. 1999.
[6] G. Ganesan and P. Stoica, “Space–time block codes: A maximum SNR approach,” IEEE Trans. Inf. Theory, vol. 47, no. 4, pp. 1650–1656, May 2001.
[7] H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Trans. Commun., vol. 49, no. 1, pp. 1–4, Jan. 2001.
[8] W. Su and X.-G. Xia, “Signal constellations for quasi-orthogonal space-time block codes with full diversity,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2331–2347, Oct. 2004.
[9] B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in space and time,” IEEE Trans. Inf. Theory, vol. 48, no. 7, pp. 1804–1824, Jul. 2002.
[10] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, “Full-diversity, high-rate space-time block codes from division algebras,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2596–
2616, Oct. 2003.
[11] J.-C. Bel ore, G. Rekaya, and E. Viterbo, “The Golden code: A 2x2 full-rate space-time code with nonvanishing determinants,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp.
1432–1436, Apr. 2005.
[12] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh at fading,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 543–564, Mar. 2000.
[13] C. Yuen, Y. L. Guan, and T. T. Tjhung, “Power-balanced orthogonal space–time block code,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 3304–3309, Sep. 2008.
[14] S. Das and B. S. Rajan, “Square complex orthogonal designs with low PAPR and signaling complexity,” IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 204–213, Jan. 2009.
[15] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, May 2003.
[16] B. M. Hochwald and W. Sweldens, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052, Dec. 2000.
[17] M. Brehler and M. K. Varanasi, “Asymptotic error probability analysis of quadratic receivers in Rayleigh-fading channels with applications to a uni ed analysis of coherent and noncoherent space–time receivers,” IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2383–2399, Sep. 2001.
[18] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000.
[19] R. Schober and L. H. J. Lampe, “Differential modulation diversity,” IEEE Trans. Veh. Technol., vol. 51, no. 6, pp. 1431–1444, Nov. 2002.
[20] M. Tao, “Effects of non-identical Rayleigh fading on differential unitary space-time modulation,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1359–1369, May 2009.
[21] V. Tarokh and H. Jafarkhani, “A differential detection scheme for transmit diversity,” IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp. 1169–1174, Jul. 2000.
[22] G. Ganesan and P. Stoica, “Differential modulation using space-time block codes,” IEEE Signal Process. Lett., vol. 9, no. 2, pp. 57–60, Feb. 2002.
[23] A. Song, G. Wang, W. Su, and X.-G. Xia, “Unitary space-time codes from Alamouti’s scheme with APSK signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2374–2384, Nov. 2004.
[24] M. R. Bhatnagar, A. Hjorungnes, and L. Song, “Differential coding for non-orthogonal space-time block codes with non-unitary constellations over arbitrarily correlated Rayleigh channels,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 3985–3995, Aug. 2009.
[25] X. Yu, D. Xu, and G. Bi, “Differential space-time coding scheme using star quadrature amplitude modulation method,” EURASIP J. Applied Signal Processing, vol. 2006, no. 89849, pp. 1–12, Apr. 2006.
[26] G. Bauch, “Bandwidth-efficient differential space-time modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2792–2803, Sep. 2008.
[27] T. Eng, N. Kong, and L. B. Milstein, “Comparison of diversity combining techniques for Rayleigh-fading channels,” IEEE Trans. Commun., vol. 44, no. 9, pp. 1117–1129, Sep. 1996.
[28] D. G. Brennan, “Linear diversity combining techniques,” Proc. IEEE, vol. 91, no. 2, pp. 331–356, Feb. 2003.
[29] Z. Wang and G. B. Giannakis, “A simple and general parameterization quantifying performance in fading channels,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1389–1398, Aug. 2003.
[30] H.-G. Ryu, J. S. Park, and J.-S. Park, “Threshold IBO of HPA in the predistorted OFDM communication system,” IEEE Trans. Broadcast., vol. 50, no. 4, pp. 425–428, Dec. 2004.
[31] E. Costa and S. Pupolin, “M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise,” IEEE Trans. Commun., vol. 50, no. 3, pp. 462–472, Mar. 2002.
[32] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28. no. 5, pp. 5–14, May 1990.
[33] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications: Where Fourier meets Shannon,” IEEE Signal Process. Mag., vol. 17, no. 3, pp. 29–48, May 2000.
[34] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun.,
vol. 50, no. 12, pp. 2136–2148, Dec. 2002.
[35] Y.-P. Lin and S.-M. Phoong, “OFDM transmitters: Analog representation and DFT-based implementation,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2450–2453, Sep. 2003.
[36] I. Kim, I.-S. Park, and Y. H. Lee, “Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM,” IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1195–1207, Jul. 2006.
[37] D.Wang, Y. Cao, and L. Zheng, “Ef cient two-stage discrete bit-loading algorithms for OFDM systems,” IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3407–3416, Sep. 2010.
[38] Z. Wang and G. B. Giannakis, “Complex-field coding for OFDM over fading wireless channels,” IEEE Trans. Inf. Theory, vol. 49, no. 3, pp. 707–720, Mar. 2003.
[39] Z. Liu, Y. Xin, and G. B. Giannakis, “Linear constellation precoding for OFDM with maximum multipath diversity and coding gains,” IEEE Trans. Commun., vol. 51, no. 3, pp. 416–427, Mar. 2003.
[40] D. L. Goeckel and G. Ananthaswamy, “On the design of multidimensional signal sets for OFDM systems,” IEEE Trans. Commun., vol. 50, no. 3, pp. 442–452, Mar. 2002.
[41] M. L. McCloud, “Analysis and design of short block OFDM spreading matrices for use on multipath fading channels,” IEEE Trans. Commun., vol. 53, no. 4, pp. 656–665, Apr. 2005.
[42] J. Lu, T. T. Tjhung, F. Adachi, and C. L. Huang, “BER performance of OFDM-MDPSK system in frequency-selective Rician fading with diversity reception,” IEEE Trans. Veh.
Technol., vol. 49, no. 4, pp. 1216–1225, Jul. 2000.
[43] K. Zhong, T. T. Tjhung, and F. Adachi, “A general SER formula for an OFDM system with MDPSK in frequency domain over Rayleigh fading channels,” IEEE Trans. Commun., vol. 52, no. 4, pp. 584–594, Apr. 2004.
[44] S. Moriyama, K. Tsuchida, and M. Sasaki, “Digital transmission of high bit rate signals using 16DAPSK-OFDM modulation scheme,” IEEE Trans. Broadcast., vol. 44, no. 1,
pp. 115–122, Mar. 1998.
[45] V. Engels and H. Rohling, “Multilevel differential modulation technique (64-DAPSK) for multicarrier transmission systems,” European Trans. Telecommun., vol. 6, no. 6, pp. 633–640, Nov./Dec. 1995.
[46] S. Xu, H. Yang, and H. Wang, “An application of DAPSK in HF communications,” IEEE Commun. Lett., vol. 9, no. 7, pp. 613–615, Jul. 2005.
[47] Z. Liu and G. B. Giannakis, “Block differentially encoded OFDM with maximum multipath diversity,” IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 420–423, May 2003.
[48] Q. Ma, C. Tepedelenlioglu, and Z. Liu, “Differential space–time–frequency coded OFDM with maximum multipath diversity,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2232–2243, Sep. 2005.
[49] T. Himsoon, W. Su, and K. J. R. Liu, “Single-block differential transmit scheme for broadband wireless MIMO-OFDM systems,” IEEE Trans. Signal Process., vol. 54, no.
9, pp. 3305–3314, Sep. 2006.
[50] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.
[51] ——, “User cooperation diversity–Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.
[52] J. N. Laneman and G. W. Wornell, “Energy-efficient antenna sharing and relaying for wireless networks,” in Proc. IEEE Wireless Commun. and Networking Conf., Chicago,
IL, Sep. 23-28, 2000, vol. 1, pp. 7-12.
[53] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
[54] Y. Zhang, Y. Ma, and R. Tafazolli, “Modulation-adaptive cooperation schemes for wireless networks,” in Proc. IEEE Veh. Technol. Conf., Marina Bay, Singapore, May 11–14,
2008, pp. 1320–1324.
[55] R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, “Fading relay channels: Performance limits and space-time signal design,” IEEE J. Sel. Areas Commun., vol. 22, no. 6, pp.
1099–1109, Aug. 2004.
[56] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 659–672, Mar. 2006.
[57] Y. Zhao, R. Adve, and T. J. Lim, “Improving amplify-and-forward relay networks: Optimal power allocation versus selection,” IEEE Trans. Wireless Commun., vol. 6, no. 8,
pp. 3114–3123, Aug. 2007.
[58] S. S. Ikki and M. H. Ahmed, “Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection,” IEEE Trans. Commun., vol. 58, no. 1, pp. 68–72, Jan. 2010.
[59] J. N. Laneman and G.W.Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory, vol. 49, no.
10, pp. 2415–2425, Oct. 2003.
[60] Y. Jing and H. Jafarkhani, “Using orthogonal and quasi-orthogonal designs in wireless relay networks,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4106–4118, Nov. 2007.
[61] K. G. Seddik, A. K. Sadek, A. S. Ibrahim, and K. J. R. Liu, “Design criteria and performance analysis for distributed space-time coding,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2280–2292, Jul. 2008.
[62] K. Ishibashi and H. Ochiai, “Performance analysis of amplify and forward cooperation over peak-power limited channels,” in Proc. IEEE Int. Conf. on Commun., Kyoto, Japan, Jun. 5-9, 2011, pp. 1-5.
[63] T. Himsoon, W. P. Siriwongpairat, W. Su, and K. J. R. Liu, “Differential modulations for multinode cooperative communications,” IEEE Trans. Signal Process., vol. 56, no.
7, pp. 2941–2956, Jul. 2008.
[64] D. Chen and J. N. Laneman, “Cooperative diversity for wireless fading channels without channel state information,” in Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 7-10, 2004, vol. 2, pp. 1307–1312.
[65] Y. Zhu, P.-Y. Kam, and Y. Xin, “Non-coherent detection for amplify-and-forward relay systems in a Rayleigh fading environment,” in Proc. IEEE Global Commun. Conf., Washington, DC, Nov. 26-30, 2007, pp. 1658-1662.
[66] T. Himsoon,W. Su, and K. J. R. Liu, “Differential transmission for amplify-and-forward cooperative communications,” IEEE Signal Process. Lett., vol. 12, no. 9, pp. 597-600, Sep. 2005.
[67] Q. Zhao and H. Li, “Performance of differential modulation with wireless relays in Rayleigh fading channels,” IEEE Commun. Lett., vol. 9, no. 4, pp. 343-345, Apr. 2005.
[68] ——, “Differential modulation for cooperative wireless systems,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2273-2283, May 2007.
[69] ——, “Performance analysis of an amplify-based differential modulation for wireless relay networks under Nakagami-m fading channels,” in Proc. IEEE Int. Workshop on
Signal Process. Advances in Wireless Commun., New York, Jun. 5-8, 2005, pp. 211–215.
[70] S. S. Ikki and M. H. Ahmed, “Performance of cooperative diversity using equal gain combining (EGC) over Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 557–562, Feb. 2009.
[71] W. Cho, R. Cao, and L. Yang, “Optimum resource allocation for amplify-and-forward relay networks with differential modulation,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5680–5691, Nov. 2008.
[72] W. Cho and L. Yang, “Optimum resource allocation for relay networks with differential modulation,” IEEE Trans. Commun., vol. 56, no. 4, pp. 531–534, Apr. 2008.
[73] C.-D. Chung, “Differentially amplitude and phase-encoded QAM for the correlated Rayleigh-fading channel with diversity reception,” IEEE Trans. Commun., vol. 45, no. 3, pp. 309–321, Mar. 1997.
[74] ——, “Differentially amplitude and phase encoded QAM on Rayleigh fading channels,” in Proc. IEEE Military Commun. Conf., San Diego, CA, Nov. 5-8, 1995, vol. 3, pp. 1026-1030.
[75] C.-H. Huang and C.-D. Chung, “Differentially amplitude- and phase-encoded QAM for amplify-and-forward multiple-relay systems,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2054–2066, Jun. 2012.
[76] W. T.Webb, L. Hanzo, and R. Steele, “Bandwidth efficient QAM schemes for Rayleigh fading channels,” Proc. IEE, vol. 138, no. 3, pp. 169–175, Jun. 1991.
[77] T. T. Tjhung, X. Dong, F. Adachi, and K. H. Tan, “On diversity reception of narrowband 16 star-QAM in fast Rician fading,” IEEE Trans. Veh. Technol., vol. 46, no. 4, pp. 923–
932, Nov. 1997.
[78] X. Dong, T. T. Tjhung, and F. Adachi, “Error probability analysis for 16 star-QAM in frequency-selective Rician fading with diversity reception,” IEEE Trans. Veh. Technol., vol. 47, no. 3, pp. 924–935, Aug. 1998.
[79] Y. C. Chow, A. R. Nix, and J. P. McGeehan, “Error performance of circular 16-DAPSK with postdetection diversity reception in Rayleigh fading channels,” IEE Proc. Commun., vol. 144, no. 3, pp. 180–190, Jun. 1997.
[80] J. Y. Lee, Y. M. Chung, and S. U. Lee, “Postdetection diversity receiver for DAPSK signals on the Rayleigh- and Rician-fading channel,” IEEE Trans. Veh. Technol., vol.
50, no. 5, pp. 1193–1202, Sep. 2001.
[81] Y. Ma, Q. T. Zhang, R. Schober, and S. Pasupathy, “Diversity reception of DAPSK over generalized fading channels,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp.
1834–1846, Jul. 2005.
[82] N. C. Beaulieu, “An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables,” IEEE Trans. Commun., vol. 38, no. 9, pp. 1463–1474, Sep. 1990.
[83] S. Siwamogsatham, M. P. Fitz, and J. H. Grimm, “A new view of performance analysis of transmit diversity schemes in correlated Rayleigh fading,” IEEE Trans. Inf. Theory, vol. 48, no. 4, pp. 950–956, Apr. 2002.
[84] E. Biglieri, G. Caire, G. Taricco, and J. Ventura-Traveset, “Computing error probabilities over fading channels: a unified approach,” Eur. Trans. Telecommun., vol. 9, no. 1, pp. 15–25, Jan.–Feb. 1998.
[85] J. Ventura-Traveset, G. Caire, E. Biglieri, and G. Taricco, “Impact of diversity reception on fading channels with coded modulation—Part II: Differential block detection,” IEEE Trans. Commun., vol. 45, no. 6, pp. 676–686, Jun. 1997.
[86] M. Mohammad and R. M. Buehrer, “On the impact of SNR estimation error on adaptive modulation,” IEEE Commun. Lett., vol. 9, no. 6, pp. 490-492, Jun. 2005.
[87] S. Roy and P. Fortier, “Maximal-ratio combining architectures and performance with channel estimation based on a training sequence,” IEEE Trans. Wireless Commun., vol.
3, no. 4, pp. 1154-1164, Jul. 2004.
[88] A. Bernardini, R. Bausani, and R. Pattuelli, “Semi-analytical performance evaluation in satellite digital links in the presence of interference,” IEEE Trans. Commun., vol. 41, no. 7, pp. 1031-1035, Jul. 1993.
[89] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover, 1970.
[90] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000.
[91] H. J. Larson and B. O. Shubert, Probabilistic Models in Engineering Sciences. New York: Wiley, 1979.
[92] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008.
[93] T. S. Rappaport, Wireless Communications: Principles and Practice. Englewood Cliffs, NJ: Prentice Hall, 1996.
[94] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985.
[95] B. O’Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer''s Companion. Piscataway, NJ, USA: IEEE Press, 1999.
[96] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185–187, May, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔