|
[1] T. K. Y. Lo, “Maximum ratio transmission,” IEEE Trans. Commun., vol. 47, no. 10, pp. 1458–1461, Oct. 1999. [2] D. J. Love, R. W. Health, and T. Strohmer, “Grassmannian beamforming for multiple-input multiple-output wireless systems,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003. [3] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998. [4] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998. [5] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space–time block codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456–1467, Jul. 1999. [6] G. Ganesan and P. Stoica, “Space–time block codes: A maximum SNR approach,” IEEE Trans. Inf. Theory, vol. 47, no. 4, pp. 1650–1656, May 2001. [7] H. Jafarkhani, “A quasi-orthogonal space-time block code,” IEEE Trans. Commun., vol. 49, no. 1, pp. 1–4, Jan. 2001. [8] W. Su and X.-G. Xia, “Signal constellations for quasi-orthogonal space-time block codes with full diversity,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2331–2347, Oct. 2004. [9] B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in space and time,” IEEE Trans. Inf. Theory, vol. 48, no. 7, pp. 1804–1824, Jul. 2002. [10] B. A. Sethuraman, B. S. Rajan, and V. Shashidhar, “Full-diversity, high-rate space-time block codes from division algebras,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2596– 2616, Oct. 2003. [11] J.-C. Bel ore, G. Rekaya, and E. Viterbo, “The Golden code: A 2x2 full-rate space-time code with nonvanishing determinants,” IEEE Trans. Inf. Theory, vol. 51, no. 4, pp. 1432–1436, Apr. 2005. [12] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh at fading,” IEEE Trans. Inf. Theory, vol. 46, no. 2, pp. 543–564, Mar. 2000. [13] C. Yuen, Y. L. Guan, and T. T. Tjhung, “Power-balanced orthogonal space–time block code,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 3304–3309, Sep. 2008. [14] S. Das and B. S. Rajan, “Square complex orthogonal designs with low PAPR and signaling complexity,” IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 204–213, Jan. 2009. [15] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1073–1096, May 2003. [16] B. M. Hochwald and W. Sweldens, “Differential unitary space-time modulation,” IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052, Dec. 2000. [17] M. Brehler and M. K. Varanasi, “Asymptotic error probability analysis of quadratic receivers in Rayleigh-fading channels with applications to a uni ed analysis of coherent and noncoherent space–time receivers,” IEEE Trans. Inf. Theory, vol. 47, no. 6, pp. 2383–2399, Sep. 2001. [18] B. L. Hughes, “Differential space-time modulation,” IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 2567–2578, Nov. 2000. [19] R. Schober and L. H. J. Lampe, “Differential modulation diversity,” IEEE Trans. Veh. Technol., vol. 51, no. 6, pp. 1431–1444, Nov. 2002. [20] M. Tao, “Effects of non-identical Rayleigh fading on differential unitary space-time modulation,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1359–1369, May 2009. [21] V. Tarokh and H. Jafarkhani, “A differential detection scheme for transmit diversity,” IEEE J. Sel. Areas Commun., vol. 18, no. 7, pp. 1169–1174, Jul. 2000. [22] G. Ganesan and P. Stoica, “Differential modulation using space-time block codes,” IEEE Signal Process. Lett., vol. 9, no. 2, pp. 57–60, Feb. 2002. [23] A. Song, G. Wang, W. Su, and X.-G. Xia, “Unitary space-time codes from Alamouti’s scheme with APSK signals,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2374–2384, Nov. 2004. [24] M. R. Bhatnagar, A. Hjorungnes, and L. Song, “Differential coding for non-orthogonal space-time block codes with non-unitary constellations over arbitrarily correlated Rayleigh channels,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 3985–3995, Aug. 2009. [25] X. Yu, D. Xu, and G. Bi, “Differential space-time coding scheme using star quadrature amplitude modulation method,” EURASIP J. Applied Signal Processing, vol. 2006, no. 89849, pp. 1–12, Apr. 2006. [26] G. Bauch, “Bandwidth-efficient differential space-time modulation,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2792–2803, Sep. 2008. [27] T. Eng, N. Kong, and L. B. Milstein, “Comparison of diversity combining techniques for Rayleigh-fading channels,” IEEE Trans. Commun., vol. 44, no. 9, pp. 1117–1129, Sep. 1996. [28] D. G. Brennan, “Linear diversity combining techniques,” Proc. IEEE, vol. 91, no. 2, pp. 331–356, Feb. 2003. [29] Z. Wang and G. B. Giannakis, “A simple and general parameterization quantifying performance in fading channels,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1389–1398, Aug. 2003. [30] H.-G. Ryu, J. S. Park, and J.-S. Park, “Threshold IBO of HPA in the predistorted OFDM communication system,” IEEE Trans. Broadcast., vol. 50, no. 4, pp. 425–428, Dec. 2004. [31] E. Costa and S. Pupolin, “M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise,” IEEE Trans. Commun., vol. 50, no. 3, pp. 462–472, Mar. 2002. [32] J. A. C. Bingham, “Multicarrier modulation for data transmission: An idea whose time has come,” IEEE Commun. Mag., vol. 28. no. 5, pp. 5–14, May 1990. [33] Z. Wang and G. B. Giannakis, “Wireless multicarrier communications: Where Fourier meets Shannon,” IEEE Signal Process. Mag., vol. 17, no. 3, pp. 29–48, May 2000. [34] B. Muquet, Z. Wang, G. B. Giannakis, M. de Courville, and P. Duhamel, “Cyclic prefixing or zero padding for wireless multicarrier transmissions?” IEEE Trans. Commun., vol. 50, no. 12, pp. 2136–2148, Dec. 2002. [35] Y.-P. Lin and S.-M. Phoong, “OFDM transmitters: Analog representation and DFT-based implementation,” IEEE Trans. Signal Process., vol. 51, no. 9, pp. 2450–2453, Sep. 2003. [36] I. Kim, I.-S. Park, and Y. H. Lee, “Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM,” IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1195–1207, Jul. 2006. [37] D.Wang, Y. Cao, and L. Zheng, “Ef cient two-stage discrete bit-loading algorithms for OFDM systems,” IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3407–3416, Sep. 2010. [38] Z. Wang and G. B. Giannakis, “Complex-field coding for OFDM over fading wireless channels,” IEEE Trans. Inf. Theory, vol. 49, no. 3, pp. 707–720, Mar. 2003. [39] Z. Liu, Y. Xin, and G. B. Giannakis, “Linear constellation precoding for OFDM with maximum multipath diversity and coding gains,” IEEE Trans. Commun., vol. 51, no. 3, pp. 416–427, Mar. 2003. [40] D. L. Goeckel and G. Ananthaswamy, “On the design of multidimensional signal sets for OFDM systems,” IEEE Trans. Commun., vol. 50, no. 3, pp. 442–452, Mar. 2002. [41] M. L. McCloud, “Analysis and design of short block OFDM spreading matrices for use on multipath fading channels,” IEEE Trans. Commun., vol. 53, no. 4, pp. 656–665, Apr. 2005. [42] J. Lu, T. T. Tjhung, F. Adachi, and C. L. Huang, “BER performance of OFDM-MDPSK system in frequency-selective Rician fading with diversity reception,” IEEE Trans. Veh. Technol., vol. 49, no. 4, pp. 1216–1225, Jul. 2000. [43] K. Zhong, T. T. Tjhung, and F. Adachi, “A general SER formula for an OFDM system with MDPSK in frequency domain over Rayleigh fading channels,” IEEE Trans. Commun., vol. 52, no. 4, pp. 584–594, Apr. 2004. [44] S. Moriyama, K. Tsuchida, and M. Sasaki, “Digital transmission of high bit rate signals using 16DAPSK-OFDM modulation scheme,” IEEE Trans. Broadcast., vol. 44, no. 1, pp. 115–122, Mar. 1998. [45] V. Engels and H. Rohling, “Multilevel differential modulation technique (64-DAPSK) for multicarrier transmission systems,” European Trans. Telecommun., vol. 6, no. 6, pp. 633–640, Nov./Dec. 1995. [46] S. Xu, H. Yang, and H. Wang, “An application of DAPSK in HF communications,” IEEE Commun. Lett., vol. 9, no. 7, pp. 613–615, Jul. 2005. [47] Z. Liu and G. B. Giannakis, “Block differentially encoded OFDM with maximum multipath diversity,” IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 420–423, May 2003. [48] Q. Ma, C. Tepedelenlioglu, and Z. Liu, “Differential space–time–frequency coded OFDM with maximum multipath diversity,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2232–2243, Sep. 2005. [49] T. Himsoon, W. Su, and K. J. R. Liu, “Single-block differential transmit scheme for broadband wireless MIMO-OFDM systems,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3305–3314, Sep. 2006. [50] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003. [51] ——, “User cooperation diversity–Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003. [52] J. N. Laneman and G. W. Wornell, “Energy-efficient antenna sharing and relaying for wireless networks,” in Proc. IEEE Wireless Commun. and Networking Conf., Chicago, IL, Sep. 23-28, 2000, vol. 1, pp. 7-12. [53] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004. [54] Y. Zhang, Y. Ma, and R. Tafazolli, “Modulation-adaptive cooperation schemes for wireless networks,” in Proc. IEEE Veh. Technol. Conf., Marina Bay, Singapore, May 11–14, 2008, pp. 1320–1324. [55] R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler, “Fading relay channels: Performance limits and space-time signal design,” IEEE J. Sel. Areas Commun., vol. 22, no. 6, pp. 1099–1109, Aug. 2004. [56] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 659–672, Mar. 2006. [57] Y. Zhao, R. Adve, and T. J. Lim, “Improving amplify-and-forward relay networks: Optimal power allocation versus selection,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 3114–3123, Aug. 2007. [58] S. S. Ikki and M. H. Ahmed, “Performance analysis of adaptive decode-and-forward cooperative diversity networks with best-relay selection,” IEEE Trans. Commun., vol. 58, no. 1, pp. 68–72, Jan. 2010. [59] J. N. Laneman and G.W.Wornell, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, Oct. 2003. [60] Y. Jing and H. Jafarkhani, “Using orthogonal and quasi-orthogonal designs in wireless relay networks,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4106–4118, Nov. 2007. [61] K. G. Seddik, A. K. Sadek, A. S. Ibrahim, and K. J. R. Liu, “Design criteria and performance analysis for distributed space-time coding,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2280–2292, Jul. 2008. [62] K. Ishibashi and H. Ochiai, “Performance analysis of amplify and forward cooperation over peak-power limited channels,” in Proc. IEEE Int. Conf. on Commun., Kyoto, Japan, Jun. 5-9, 2011, pp. 1-5. [63] T. Himsoon, W. P. Siriwongpairat, W. Su, and K. J. R. Liu, “Differential modulations for multinode cooperative communications,” IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2941–2956, Jul. 2008. [64] D. Chen and J. N. Laneman, “Cooperative diversity for wireless fading channels without channel state information,” in Proc. Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 7-10, 2004, vol. 2, pp. 1307–1312. [65] Y. Zhu, P.-Y. Kam, and Y. Xin, “Non-coherent detection for amplify-and-forward relay systems in a Rayleigh fading environment,” in Proc. IEEE Global Commun. Conf., Washington, DC, Nov. 26-30, 2007, pp. 1658-1662. [66] T. Himsoon,W. Su, and K. J. R. Liu, “Differential transmission for amplify-and-forward cooperative communications,” IEEE Signal Process. Lett., vol. 12, no. 9, pp. 597-600, Sep. 2005. [67] Q. Zhao and H. Li, “Performance of differential modulation with wireless relays in Rayleigh fading channels,” IEEE Commun. Lett., vol. 9, no. 4, pp. 343-345, Apr. 2005. [68] ——, “Differential modulation for cooperative wireless systems,” IEEE Trans. Signal Process., vol. 55, no. 5, pp. 2273-2283, May 2007. [69] ——, “Performance analysis of an amplify-based differential modulation for wireless relay networks under Nakagami-m fading channels,” in Proc. IEEE Int. Workshop on Signal Process. Advances in Wireless Commun., New York, Jun. 5-8, 2005, pp. 211–215. [70] S. S. Ikki and M. H. Ahmed, “Performance of cooperative diversity using equal gain combining (EGC) over Nakagami-m fading channels,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 557–562, Feb. 2009. [71] W. Cho, R. Cao, and L. Yang, “Optimum resource allocation for amplify-and-forward relay networks with differential modulation,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5680–5691, Nov. 2008. [72] W. Cho and L. Yang, “Optimum resource allocation for relay networks with differential modulation,” IEEE Trans. Commun., vol. 56, no. 4, pp. 531–534, Apr. 2008. [73] C.-D. Chung, “Differentially amplitude and phase-encoded QAM for the correlated Rayleigh-fading channel with diversity reception,” IEEE Trans. Commun., vol. 45, no. 3, pp. 309–321, Mar. 1997. [74] ——, “Differentially amplitude and phase encoded QAM on Rayleigh fading channels,” in Proc. IEEE Military Commun. Conf., San Diego, CA, Nov. 5-8, 1995, vol. 3, pp. 1026-1030. [75] C.-H. Huang and C.-D. Chung, “Differentially amplitude- and phase-encoded QAM for amplify-and-forward multiple-relay systems,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2054–2066, Jun. 2012. [76] W. T.Webb, L. Hanzo, and R. Steele, “Bandwidth efficient QAM schemes for Rayleigh fading channels,” Proc. IEE, vol. 138, no. 3, pp. 169–175, Jun. 1991. [77] T. T. Tjhung, X. Dong, F. Adachi, and K. H. Tan, “On diversity reception of narrowband 16 star-QAM in fast Rician fading,” IEEE Trans. Veh. Technol., vol. 46, no. 4, pp. 923– 932, Nov. 1997. [78] X. Dong, T. T. Tjhung, and F. Adachi, “Error probability analysis for 16 star-QAM in frequency-selective Rician fading with diversity reception,” IEEE Trans. Veh. Technol., vol. 47, no. 3, pp. 924–935, Aug. 1998. [79] Y. C. Chow, A. R. Nix, and J. P. McGeehan, “Error performance of circular 16-DAPSK with postdetection diversity reception in Rayleigh fading channels,” IEE Proc. Commun., vol. 144, no. 3, pp. 180–190, Jun. 1997. [80] J. Y. Lee, Y. M. Chung, and S. U. Lee, “Postdetection diversity receiver for DAPSK signals on the Rayleigh- and Rician-fading channel,” IEEE Trans. Veh. Technol., vol. 50, no. 5, pp. 1193–1202, Sep. 2001. [81] Y. Ma, Q. T. Zhang, R. Schober, and S. Pasupathy, “Diversity reception of DAPSK over generalized fading channels,” IEEE Trans. Wireless Commun., vol. 4, no. 4, pp. 1834–1846, Jul. 2005. [82] N. C. Beaulieu, “An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables,” IEEE Trans. Commun., vol. 38, no. 9, pp. 1463–1474, Sep. 1990. [83] S. Siwamogsatham, M. P. Fitz, and J. H. Grimm, “A new view of performance analysis of transmit diversity schemes in correlated Rayleigh fading,” IEEE Trans. Inf. Theory, vol. 48, no. 4, pp. 950–956, Apr. 2002. [84] E. Biglieri, G. Caire, G. Taricco, and J. Ventura-Traveset, “Computing error probabilities over fading channels: a unified approach,” Eur. Trans. Telecommun., vol. 9, no. 1, pp. 15–25, Jan.–Feb. 1998. [85] J. Ventura-Traveset, G. Caire, E. Biglieri, and G. Taricco, “Impact of diversity reception on fading channels with coded modulation—Part II: Differential block detection,” IEEE Trans. Commun., vol. 45, no. 6, pp. 676–686, Jun. 1997. [86] M. Mohammad and R. M. Buehrer, “On the impact of SNR estimation error on adaptive modulation,” IEEE Commun. Lett., vol. 9, no. 6, pp. 490-492, Jun. 2005. [87] S. Roy and P. Fortier, “Maximal-ratio combining architectures and performance with channel estimation based on a training sequence,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1154-1164, Jul. 2004. [88] A. Bernardini, R. Bausani, and R. Pattuelli, “Semi-analytical performance evaluation in satellite digital links in the presence of interference,” IEEE Trans. Commun., vol. 41, no. 7, pp. 1031-1035, Jul. 1993. [89] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 9th ed. New York: Dover, 1970. [90] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, 2000. [91] H. J. Larson and B. O. Shubert, Probabilistic Models in Engineering Sciences. New York: Wiley, 1979. [92] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New York: McGraw-Hill, 2008. [93] T. S. Rappaport, Wireless Communications: Principles and Practice. Englewood Cliffs, NJ: Prentice Hall, 1996. [94] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985. [95] B. O’Hara and A. Petrick, The IEEE 802.11 Handbook: A Designer''s Companion. Piscataway, NJ, USA: IEEE Press, 1999. [96] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185–187, May, 2001.
|