|
[1]K. Gu, V. L. Kharitonov, J. Chen, Stability of Time-Delay Systems, Birkha&;uuml;ser, Boston, MA, 2003. [2]S.-I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Springer, Berlin, CA, 2001. [3]Y. S. Moon, P. Park, W. H. Kown, Y. S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of Control 74 (2001) 1447-1455. [4]P Park, Delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE Transactions on Automatic Control 44 (1999) 876-877. [5]S. Xu , J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE Transactions on Automatic Control 50 (2005) 384-387. [6]Y. He, Q.-G. Wang, L. Xie, C. Liu, Further improvement of free-weighting matrices technique for systems with time-varying delay, IEEE Transactions on Automatic Control 52 (2007) 293-299. [7]X. Jiang, Q.-L. Han, On control for linear systems with interval time-varying delay, Automatica 41 (2005) 2099-2106. [8]T. Zhang, Y. Li, G. Liu, Robust stabilisation of uncertain systems with interval time-varying state and input delays, International Journal of Systems and Science 40 (2009) 11-20. [9]E. H. Tissir, Delay-dependent robust stability of linear systems with non-commensurate time varying delays, International Journal of Systems and Science 38 (2007) 749-757. [10]C. Lin, Q.-G. Wang, T. H. Lee, A less conservative robust stability test for linear uncertain time-delay systems, IEEE Transactions on Automatic Control 51 (2006) 87-91. [11]P. Park, J. W. Ko, Stability and robust stability for systems with a time-varying delay, Automatica 43 (2007) 1855-1858. [12]M. Wu, Y. He, J.-H. She, G.-P. Liu, Delay-dependent criteria for robust stability of time-varying delay systems, Automatica 40 (2004) 1435-1439. [13]W. Zhang, M. S. Branicky, S. M. Phillips, Stability of networked control systems, IEEE Control Systems Magazine 21 (2001) 84-99. [14]D. Yue, Q.-L. Han, C. Peng, State feedback controller design of networked control systems, IEEE Transactions on Circuits and Systems II: Express Briefs 51 (2004) 640-644. [15]D. Yue, Q.-L. Han, J. Lam, Network-based robust control of systems with uncertainty, Automatica 41 (2005) 999-1007. [16]H. Shao, New Delay-dependent stability criteria for systems with interval delay, Automatica 45 (2009) 744-749. [17]Y. He, Q.-G. Wang, C. Lin, M. Wu, Delay-range-dependent stability for systems with time-varying delay, Automatica 43 (2007) 371-376. [18]C. Peng, Y.-C. Tian, Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay, IET Control Theory and Applications 2 (2008) 752-761. [19]B. R. Barmish, New tools for robustness of linear systems, Macmillan, New York, New York, 1994. [20]S. Xu, J. Lam, On equivalence and efficiency of certain stability criteria for time-delay systems, IEEE Transactions on Automatic Control 52 (2007) 95-101. [21]J. Lam, H. Gao, C. Wang, Stability analysis for continuous systems with two additive time-varying delay components, Systems &; Control Letters 56 (2007) 16-24. [22]B. Du, J. Lam, Z. Shu, Z. Wang, A delay-partitioning projection approach to stability analysis of continuous systems with multiple delay components, IET Control Theory and Applications 3 (2009) 383-390. [23]G. Guo, Stability and performance of multiple-delay systems with successive delay components, International Journal of Adaptive Control and Signal Processing 24 (2010) 643-656. [24]R. Dey, G. Ray, S. Ghosh, A. Rakshit, Stability analysis for continuous system with additive time-varying delays: a less conservative result, Applied Mathematics and Computation 215 (2010) 3740-3745. [25]H. Gao, T. Chen, J. Lam, A new delay system approach to network- based control, Automatica 44 (2008) 39-52. [26]H. Wu, X. Liao, W. Feng, S. Guo, W. Zhang, Robust stability analysis of uncertain systems with two additive time-varying delay components, Applied Mathematical Modelling 33 (2009) 4345-4353. [27]E. Fridman, A. Seuret, J. P. Richard, Robust sampled-data stabilization of linear system: an input delay approach, Automatica 40 (2004) 1441-1446. [28]B. Liu, H. Hu, Stabilization of linear undamped systems via position and delayed position feedbacks, Journal of Sound and Vibration 312 (2008) 509-525. [29]F. M. Atay, Balancing the inverted pendulum using position feedback, Applied Mathematics Letters 12 (1999) 51-56. [30]K. Pyragas, Continuous control of chaos by self-controlling feedback, Physics Letters A 170 (1992) 421-428. [31]A. Maccari, Vibration control for the primary resonance of a cantilever beam by a time delay state feedback, Journal of Sound and Vibration 259 (2003) 241-251. [32]R. Sipahi, N. Olgac, Active vibration suppression with time delayed feedback, Journal of Vibration and Acoustics, Transactions of the ASME 125 (2003) 384-388. [33]J. Das, A. K. Mallik, Control of friction driven oscillation by time-delayed state feedback, Journal of Sound and Vibration 297 (2006) 578-594. [34]S. Chatterjee, P. Mahata, Time-delayed absorber for controlling friction-driven vibration, Journal of Sound and Vibration 322 (2009) 39-59. [35]C. Raffel, J. Smith, Practical modeling of bucket-brigade device circuits, Proc. 13th International Conference on Digital Audio Effects, Graz, Australia, 1998. [36]S.-I. Niculescu, memoryless control with an -stability constraint for time-delay systems: an LMI approach, IEEE Transactions on Automatic Control 43 (1998) 739-743. [37]L. Xie, Output feedback control of systems with parameter uncertainty, International Journal of Control 63 (1996) 741-750. [38]I-K. Fong, C.-P. Lin, J.-S. Huang, Linear matrix inequality stability conditions from a parameter-dependent Lyapunov functional for linear systems with a time-varying delay, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 224 (2010) 701-712. [39]H. Du, N. Zong, F. Naghdy, Actuator saturation control of uncertain structures with input time delay, Journal of Sound and Vibration 330 (2011) 4399-4412. [40]M. C. Berg, Multirate digital control system design, IEEE Transactions on Automatic Control 33 (1988) 1139-1150. [41]A. Seuret, A novel stability analysis of linear systems under asynchronous samplings, Automatica 48 (2012) 177-182. [42]P. Naghshtabrizi, J. P. Hespanha, A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems &; Control Letters 57 (2008) 378-385. [43]E. Fridman, A refined input delay approach to sampled-data control, Automatica 46 (2010) 421-427. [44]S. I. Niculescu, memoryless control with an -stability constraint for time-delay systems: an LMI approach, IEEE Transactions on Automatic Control 43 (1998) 739-743. [45]C. A. R. Crusius, A. Trofino, Sufficient LMI conditions for output feedback control problems, IEEE Transactions on Automatic Control 44 (1999) 1053-1057. [46]A. Trofino, A. S. Bazanella, A. Fischman, Designing robust controllers with operating point tracking, Proceedings of IFAC Conference on System Structure and Control, Nantes, France, 1998. [47]M. C. de Oliveira, J. Bernussou, J. C. Geromel, A new discrete-time robust stability condition, Systems &; Control Letters 37 (1999) 261-265.
|