(3.239.33.139) 您好!臺灣時間:2021/02/26 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳勳
研究生(外文):Chia-Hsun Lin
論文名稱:針對五十肩病患之穩定性模型及力矩增益值動態調整方法應用於NTUH-II復健機器手臂
論文名稱(外文):Dynamic Stiffness Model and Torque Gain Adjustment Method Implemented on NTUH-II Robot Arm for Frozen Shoulder Rehabilitation
指導教授:傅立成傅立成引用關係
指導教授(外文):Li-Chen Fu
口試委員:賴金鑫陳文翔顏炳郎陸哲駒
口試委員(外文):Jin-Shin LaiWen-Shiang ChenPing-Lang YenJer-Junn Luh
口試日期:2014-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:79
中文關鍵詞:復健機械手臂五十肩上肢復健NTUH-II
外文關鍵詞:rehabilitation roboticsfrozen shoulderupper limbNTUH-II
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
五十肩,或稱為冰凍肩,是一個與肩部關節功能相關的疾病。臨床上普及率約在2%至5%,好發於40至65歲族群。在眾多的治療策略當中,物理治療是最為常見且容易實行的方式,其中,在超過疼痛點的往復運動、以及最大化極限點附近的停留時間將對五十肩復健有益。
本研究中設計並實作出了新一代的八自由度復健機器手臂NTUH-II,此機械手臂能提供上肢復健的各種模式需求,包含被動、主動、輔助主動模式。新一代機械手臂相較於上一代機械手臂有許多進步之處,如更大的肩關節屈伸活動角度、肩部定位雷射工具、左右互換功能、肩部牽引功能等。
本研究結合了復健醫學以及電機工程上的知識背景。從肌肉伸展的張力及角度關係出發,可發現一指數形式之曲線,再根據此建構出一病患個人狀況模型,及評估病患的動作品質。本研究著重探討僵直性(Stiffness)此參數,進而提出動態僵直性模型及輔助力矩增益函數的建構方式。
本研究提出的控制演算法能針對不同位五十肩病患的需求,個人化出不同的復健療程。而在本論文最後部份,呈現足以驗證本研究所提出理論之許多實驗成果。


Frozen shoulder is a functional disorder related to shoulder muscles. Among many treatment strategies, rehabilitation exercise is one of the most common and viable therapy.
In this research, a new 8 degrees of freedom (DOFs) rehabilitation robot arm named NTUH-II has been developed for frozen shoulder rehabilitation in our laboratory. The robot arm is able to provide most of upper limb rehabilitation motions in passive, active, and assistive modes. There are many improvements for NTUH-II from the previous version NTUH-ARM, also developed in our laboratory such as larger shoulder flexion/extension range of motion, shoulder localization with laser tools, side-changing, and shoulder traction.
This work combines knowledge from rehabilitation medicine to robotic engineering. From the nature of muscle stretching, the exponential torque-angle relationship curve can be found, and thus it is possible to model and evaluate the condition of the patient’s motion quality. The use of two parameters, stiffness and control authority, is proposed in this work. Based on these two parameters, an adjustment method of dynamic stiffness model and assistance torque gain is developed and implemented on NTUH-II.
The control algorithm proposed in this research can customize the rehabilitation to meet the individual needs of frozen shoulder patients. Various experiments have been conducted on healthy subjects in National Taiwan University Hospital, and appealing performance has been observed, which validates the method proposed in this paper.


口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Survey 3
1.2.1 Clinical treatments for frozen shoulder 3
1.2.2 Rehabilitation robot arms 3
1.2.3 Comparisons and comments 4
1.3 Contribution 6
1.4 Thesis Organization 7
Chapter 2 Preliminaries 8
2.1 Jacobians 8
2.2 Manipulator’s Dynamic Equations 10
2.3 Lagrangian Formulation 11
2.4 Six-axis Force/Torque Sensor 12
2.5 A Brief Introduction to Frozen Shoulder 14
2.6 Therapeutic Exercises 15
2.6.1 Passive Mode 15
2.6.2 Active Mode 16
2.6.3 Active-Assistive/Resistive Mode 16
2.7 Displacement of Glenohumeral Joint 17
Chapter 3 Design of Rehabilitation Robot NTUH-II 18
3.1 Mechanical Structure 18
3.2 Functions 21
3.2.1 Initialization with potential meters and encoders 21
3.2.2 Localization 23
3.2.3 Side-changing 24
3.2.4 Rehabilitation motions 26
3.3 Safety 26
3.4 Hardware Structure and Software Interface 28
3.4.1 Hardware structure 28
3.4.2 Software interface 31
Chapter 4 Design of Control System 34
4.1 Human Arm Dynamics 34
4.2 Mapping Relationships between Human Arm and Robot Arm 37
4.3 Derivation of Human Interaction force 39
4.3.1 Ideal case 41
4.3.2 Slow case 43
4.3.3 Between case 44
4.4 Muscle Torque-angle Relationship and Stiffness Model 45
4.4.1 Muscle torque-angle relationship 45
4.4.2 Stiffness model 46
4.5 Dynamic Adjustment Algorithm for Frozen Shoulder Rehabilitation in Active Mode 48
4.5.1 Dynamic stiffness model (pure active mode) 48
4.5.2 Dynamic gain function (active-assistive mode) 51
4.6 Applications 54
4.6.1 Shoulder traction 54
4.6.2 Repetitive swing near the end point 55
Chapter 5 Experimental Results 58
5.1 Experimental Setup 58
5.2 Getting Human Arm Intention 59
5.2.1 General case 59
5.2.2 Case with motor joint limitations 61
5.2.3 Multi-joint force coupling 62
5.3 Stiffness Curve 65
5.3.1 Stiffness curve with the same motion but different subjects 65
5.3.2 Stiffness curve with the same subject but different motions 67
5.4 Stiffness Model and Gain Function 68
5.4.1 Building stiffness model 68
5.4.2 Effects of gain function 69
5.4.3 Effects of active-assistive rehabilitation 72
5.5 Passive Shoulder Traction 73
5.6 NTUH-II Overall Function Test with Healthy Subjects 74
Chapter 6 Conclusions 76
REFERENCE 77

[1]J. Dawson, S. Shepperd, and A. Carr, "An overview of factors relevant to undertaking research and reviews on the effectiveness of treatment for frozen shoulder," Shoulder &; Elbow, vol. 2, pp. 232-237, 2010.
[2]P. Gleyze, T. Georges, P. H. Flurin, E. Laprelle, D. Katz, P. Clavert, et al., "Comparison and critical evaluation of rehabilitation and home-based exercises for treating shoulder stiffness: Prospective, multicenter study with 148 cases," Orthopaedics &; Traumatology: Surgery &; Research, vol. 97, pp. S182-S194, 12// 2011.
[3]J. L. Yang, M. H. Jan, C. W. Chang, and J. J. Lin, "Effectiveness of the end-range mobilization and scapular mobilization approach in a subgroup of subjects with frozen shoulder syndrome: a randomized control trial," Man Ther, vol. 17, pp. 47-52, Feb 2012.
[4]A. L. Dempsey, T. Mills, R. M. Karsch, and T. P. Branch, "Maximizing total end range time is safe and effective for the conservative treatment of frozen shoulder patients," Am J Phys Med Rehabil, vol. 90, pp. 738-45, Sep 2011.
[5]M. J. Kelley, P. W. McClure, and B. G. Leggin, "Frozen shoulder: evidence and a proposed model guiding rehabilitation," J Orthop Sports Phys Ther, vol. 39, pp. 135-48, Feb 2009.
[6]P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt, "A survey on robotic devices for upper limb rehabilitation," J Neuroeng Rehabil, vol. 11, p. 3, 2014.
[7]R. Yupeng, K. Sang Hoon, P. Hyung-Soon, W. Yi-Ning, and Z. Li-Qun, "Developing a Multi-Joint Upper Limb Exoskeleton Robot for Diagnosis, Therapy, and Outcome Evaluation in Neurorehabilitation," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 21, pp. 490-499, 2013.
[8]P. Hyung-Soon, R. Yupeng, and Z. Li-Qun, "IntelliArm: An exoskeleton for diagnosis and treatment of patients with neurological impairments," in Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS &; EMBS International Conference on, 2008, pp. 109-114.
[9]E. B. Brokaw, R. J. Holley, and P. S. Lum, "Comparison of Joint Space and End Point Space Robotic Training Modalities for Rehabilitation of Interjoint Coordination in Individuals With Moderate to Severe Impairment From Chronic Stroke," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 21, pp. 787-795, 2013.
[10]M. Guidali, P. Schlink, A. Duschau-Wicke, and R. Riener, "Online learning and adaptation of patient support during ADL training," in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011, pp. 1-6.
[11]V. Crocher, A. Sahbani, J. Robertson, A. Roby-Brami, and G. Morel, "Constraining Upper Limb Synergies of Hemiparetic Patients Using a Robotic Exoskeleton in the Perspective of Neuro-Rehabilitation," Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol. 20, pp. 247-257, 2012.
[12]Y. Hasegawa and S. Oura, "Exoskeletal meal assistance system (EMAS II) for progressive muscle dystrophy patient," IEEE Int Conf Rehabil Robot, vol. 2011, p. 5975444, 2011.
[13]N. Hogan, H. I. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon, "MIT-MANUS: a workstation for manual therapy and training. I," in Robot and Human Communication, 1992. Proceedings., IEEE International Workshop on, 1992, pp. 161-165.
[14]T. Nef, M. Mihelj, G. Kiefer, C. Perndl, R. Muller, and R. Riener, "ARMin - Exoskeleton for Arm Therapy in Stroke Patients," in Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, 2007, pp. 68-74.
[15]J. J. Craig, INTRODUCTION TO ROBOTICS MECHANICS AND CONTROL, 3 ed., 2005.
[16]M. J. Kelly, P. W. Mcclure, and B. G. Leggin, "Frozen shoulder: evidence and a proposed model guiding rehabilitation," Journal of Orthopaedic &; Sports Physical Therapy, vol. 39, pp. 135-148, 2009.
[17]S. J. Thomas, C. McDougall, I. D. M. Brown, M.-C. Jaberoo, A. Stearns, R. Ashraf, et al., "Prevalence of symptoms and signs of shoulder problems in people with diabetes mellitus," Journal of Shoulder and Elbow Surgery, vol. 16, pp. 748-751, 2007.
[18]P. Gleyze, T. Georges, P. H. Flurin, E. Laprelle, D. Katz, P. Clavert, et al., "Comparison and critical evaluation of rehabilitation and home-based exercises for treating shoulder stiffness: prospective, multicenter study with 148 cases," Orthop Traumatol Surg Res, vol. 97, pp. S182-94, Dec 2011.
[19]K. Kyung, P. Dae-Sung, K. Byung-Woo, L. Jeongsu, Y. Seung-Nam, K. Jongbae, et al., "Arm motion analysis of stroke patients in activities of daily living tasks: A preliminary study," in Engineering in Medicine and Biology Society,EMBC, 2011 Annual International Conference of the IEEE, 2011, pp. 1287-1291.
[20]C. A. M. Doorenbosch, A. J. J. M. Mourits, DirkJan H.E.J. Veeger, J. Harlaar, and F. C. T. v. d. Helm, "Determination of Functional Rotation Axes During Elevation of the Shoulder Complex," Journal of Orthopaedic &; Sports Physical Therapy, vol. 31, pp. 133-137, 2001/03/01 2001.
[21]P. W. McClure, L. A. Michener, B. J. Sennett, and A. R. Karduna, "Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo," Journal of shoulder and elbow surgery / American Shoulder and Elbow Surgeons ... [et al.], vol. 10, pp. 269-277, 2001.
[22]K. Donghan, C. Pyung-Hun, S. Min Kyun, and S. Ji-hyeon, "Shoulder mechanism design of an exoskeleton robot for stroke patient rehabilitation," in Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on, 2011, pp. 1-6.
[23]N. Klop&;#269;ar and J. Lenar&;#269;i&;#269;, "Bilateral and unilateral shoulder girdle kinematics during humeral elevation," Clinical Biomechanics, vol. 21, pp. S20-S26.
[24]M. J. Bey, S. K. Kline, R. Zauel, T. R. Lock, and P. A. Kolowich, "Measuring dynamic in-vivo glenohumeral joint kinematics: Technique and preliminary results," Journal of biomechanics, vol. 41, pp. 711-714, 2008.
[25]H. Li-Chun, W. Wei-Wen, L. Guan-De, L. Yi-Wen, F. Li-Chen, and L. Jin-Shin, "A gravity compensation-based upper limb rehabilitation robot," in American Control Conference (ACC), 2012, 2012, pp. 4819-4824.
[26]T. Yoshikawa, Foundations of Robotics: Analysis and Control: The MIT Press, 2003.
[27]梁龍鏡, "發球速度對網球選手上肢等速肌力之比較," 大專體育學刊, vol. 第2期 第13卷, pp. 181-187, 2011.
[28]陳安寶, "優秀劍道選手上肢等速肌力與打擊速度相關性之研究," 北體學報, vol. 第七期, pp. 128- 145, 2000.
[29]R. Riener and T. Edrich, "Identification of passive elastic joint moments in the lower extremities," J Biomech, vol. 32, pp. 539-44, May 1999.
[30]P. D. Hoang, R. B. Gorman, G. Todd, S. C. Gandevia, and R. D. Herbert, "A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo," J Biomech, vol. 38, pp. 1333-41, Jun 2005.
[31]M. Domalain, L. Vigouroux, and E. Berton, "Determination of passive moment-angle relationships at the trapeziometacarpal joint," J Biomech Eng, vol. 132, p. 071009, Jul 2010.
[32]Y. S. Yoon and J. M. Mansour, "The passive elastic moment at the hip," Journal of Biomechanics, vol. 15, pp. 905-910.
[33]A. Paul, J. S. Rajkumar, S. Peter, and L. Lambert, "Effectiveness of Sustained Stretching of the Inferior Capsule in the Management of a Frozen Shoulder," Clin Orthop Relat Res, Mar 25 2014.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔