|
References
Abdellatif, M. (2010). The role of microRNA-133 in cardiac hypertrophy uncovered. Circ Res, 106(1), 16-18. Bakiri L, Lallemand D, Bossy-Wetzel E, &; M., Y. (2000). Cell cycle dependent variations in c-Jun and JunB phosphorylation a role in the control of cyclin D1 expression. EMBO J. 19(9):2056-68. Bassett, D. I., &; Currie, P. D. (2003). The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet, 12 Spec No 2, R265-270. Black, F.M., Packer, S.E., Parker, T.G., Michael, L.H., Roberts, R., Schwartz, R.J., Schneider, M.D. (1991). The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load. J Clin Invest, 88(5):1581-8. Bonaldo, P., &; Sandri, M. (2013). Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech, 6(1), 25-39. Braun, J., Strittmatter, K., Nubel, T., Komljenovic, D., Sator-Schmitt, M., Bauerle, T., Angel, P., Schorpp-Kistner, M. (2014). Loss of stromal JUNB does not affect tumor growth and angiogenesis. Int J Cancer, 134(6), 1511-1516. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V., Hoydal, M., Autore, C., Russo, M. A., Dorn, G. W., Ellingsen, O., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., Condorelli, G. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med, 13(5), 613-618. Cassano, M., Quattrocelli, M., Crippa, S., Perini, I., Ronzoni, F., &; Sampaolesi, M. (2009). Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J Muscle Res Cell Motil, 30(7-8), 243-253. Chalaux, E., Lopez-Rovira, T., Rosa, J. L., Bartrons, R., &; Ventura, F. (1998). JunB is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-2. J Biol Chem, 273(1):537-43. Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 38(2), 228-233. Chen, J. F., Tao, Y., Li, J., Deng, Z., Yan, Z., Xiao, X., &; Wang, D. Z. (2010). microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol, 190(5), 867-879. Ha, M. &; Kim, V. N. (2014). Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 15, 509–524. Huang, H., &; Tindall, D. J. (2011). Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim Biophys Acta, 1813(11), 1961-1964. Johnston, I. A. (2006). Environment and plasticity of myogenesis in teleost fish. J Exp Biol, 209(Pt 12), 2249-2264. Lecker, S. H., Jagoe, R. T., Gilbert, A., Gomes, M., Baracos, V., Bailey, J., Price, S. R., Mitch, W. E., Goldberg, A. L. (2004). Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J, 18(1), 39-51. Lee, K. H., &; Kim, J. R. (2012). Regulation of HGF-mediated cell proliferation and invasion through NF-kappaB, JunB, and MMP-9 cascades in stomach cancer cells. Clin Exp Metastasis, 29(3), 263-272. Mammucari, C., Milan, G., Romanello, V., Masiero, E., Rudolf, R., Del Piccolo, Burden, S. J., Di Lisi, R., Sandri, C., Zhao, J., Goldberg, A. L., Schiaffino, S., Sandri, M.P. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell metabolism, 6(6), 458-471. McCarthy, J. J., &; Esser, K. A. (2006). MicroRNA-1 and microRnA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol, 102:306-313. McCarthy, J. J., Mula, J., Miyazaki, M., Erfani, R., Garrison, K., Farooqui, A. B., . . . Peterson, C. A. (2011). Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development, 138(17), 3657-3666. Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E. R., Sweeney, H. L., Rosentha, N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 27(2), 195-200. O''Rourke, J. R., Georges, S. A., Seay, H. R., Tapscott, S. J., McManus, M. T., Goldhamer, D. J., Swanson, M. S . Harfe, B. D. (2007). Essential role for Dicer during skeletal muscle development. Dev Biol, 311(2), 359-368. Raffaello, A., Milan, G., Masiero, E., Carnio, S., Lee, D., Lanfranchi, G., Goldberg, A. L., Sandri, M. (2010). JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol, 191,101-113. Sacheck, J. M., Hyatt, J. P., Raffaello, A., Jagoe, R. T., Roy, R. R., Edgerton, V. R., Lecker, S. H., Goldberg, A. L. (2007). Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J, 21(1), 140-155. Sandri, M. (2004). Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell. 117(3), 279-415. Sanger, J. W., Wang, J., Holloway, B., Du, A., &; Sanger, J. M. (2009). Myofibrillogenesis in skeletal muscle cells in zebrafish. Cell Motil Cytoskeleton, 66(8), 556-566. Shaulian, E., &; Karin, M. (2001). AP-1 in cell proliferation and survival. Oncogene 20, 2390-2400. Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M., Yancopoulos, G. D., Glass, D. J. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular cell, 14(3), 395-403. Wang, X. H. (2013). MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care, 16(3), 258-266.
|