(54.236.58.220) 您好!臺灣時間:2021/03/01 19:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張巧宜
研究生(外文):Chiao-Yi Chang
論文名稱:微核醣核酸-133調控JunB基因表現影響骨骼肌肉之肥大
論文名稱(外文):MicroRNA-133 modulates skeletal muscle hypertrophy through regulating JunB
指導教授:吳金洌吳金洌引用關係
指導教授(外文):Jen-Leih Wu
口試委員:胡紹揚龔紘毅黃章文
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:漁業科學研究所
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:42
中文關鍵詞:斑馬魚骨骼肌肥大微核糖核酸-133JunBAtrogin-1MuRF-1
外文關鍵詞:ZebrafishSkeletal muscle hypertrophymiR-133JunBAtrogin-1MuRF-1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
微核糖核酸為短序列、不具蛋白編碼,且可調控轉錄後基因表現之RNA分子,其中肌肉專一性表現之微核糖核酸在肌肉發育與成長上扮演重要角色。已知miR-1和miR-133的表現量下降會導致骨骼肌肥大,但其如何調控下游訊息路徑尚未清楚。已知肌肉質量受肌細胞內蛋白質的合成與降解兩者間之平衡所調節,主要由IGF-1/-Akt/mTOR訊息傳遞路徑的活化所調控。AP-1轉錄因子所屬JunB轉錄因子可有效維持肌肉質量並且快速促進肌肉肥大,可透過抑制下游兩個肌肉萎縮基因Atrogin-1和MuRF-1的表現而不影響類胰島素生長因子的作用和衛星細胞的活化。在本研究中,以生物資訊軟體分析miR-133可能調控的目標基因,不論在人類或斑馬魚均發現JunB轉錄因子的3端非編碼區有一結合區域,利用斑馬魚 (Danio rerio)為模式動物,顯微注射miRIDIAN microRNA-133 mimic 或inhibitor 發現斑馬魚肌肉會出現萎縮和肥大現象。利用冷光酵素檢測分析法證實miR-133會透過結合JunB 訊息核糖核酸而抑制基因之表現。再以西方點墨法之結果證實,miR-133可控制下游轉錄因子JunB蛋白質之表現。透過JunB拯救實驗顯示miR-133所造成的肌肉萎縮可透過JunB 訊息核糖核酸之添加來回復。本研究證實miR-133透過調控JunB影響骨骼肌肉之肥大。未來在肌肉萎縮疾病也許可提供一個新的疾病治療方法。

MicroRNAs (miRNAs) are short non-coding RNA molecules that post-transcriptionally inhibit gene expression. Muscle specific miRNAs, myomiRs, have been shown to play an essential role in regulating muscle development and growth. A previous study showed that downregulated miR-1 and miR-133 expression results in skeletal muscle hypertrophy after functional overload. However, the muscle hypertrophy regulatory roles of miRNAs are still unclear. It has been known that muscle mass is regulated by the balance between the synthesis and degradation of proteins in myofibers. Intracellular protein synthesis is mainly regulated by the activation of IGF-1/-Akt/-mammalian target of rapamycin (mTOR) pathway. The AP-1 transcription factor JunB is another efficient factor that induces rapid adult muscle hypertrophy without affecting satellite cell activation and Akt/mTOR pathway by inhibiting the downstream atrophy-related genes, Atrogin-1 and MuRF-1 expression. Our research utilized a bioinformatic software to predict the miRNA binding sites of target genes and has identified a putative miR-133 binding site on the 3’UTR of JunB in humans and zebrafish. Here we identify JunB as one of the direct regulatory targets of miR-133 by a luciferase assay, real-time PCR, and western blot in vitro. The JunB mRNA rescue assay successfully reversed the miR-133-induced muscle atrophy in zebrafish larvae. miR-133 modulates skeletal muscle hypertrophy by regulatiing JunB translation in zebrafish. The novel mechanism may pave the way for new therapies for disease-induced muscle atrophy.

Table of contents

誌謝 III
摘要 IV
Abstract V
List of figures IX
List of tables X
Chapter 1: Introduction 1
1.1 Background and significance 1
1.2 MicroRNA biogenesis and function. 5
1.3 Muscle specific microRNAs in skeletal muscle development and growth 5
1.4 Signaling pathways involve in skeletal muscle hypertrophy and atrophy 7
1.5 Transcription factor JunB in physiology function and skeletal muscle hypertrophy 9
Chapter 2: Materials and Methods 10
2.1 Fish strains 10
2.2 Microinjection 10
2.3 RNA isolation, stem loop RT-PCR and real-time PCR analysis 11
2.4 Muscle histological analysis 12
2.5 Luciferase assay plasmids construction 12
2.6 Cell culture and transfection 13
2.7 Dual-luciferase reporter assays 14
2.8 Western Blot 15
Chapter 3: Results 17
3.1 miRIDIAN miR-133a mimic and inhibitor regulate miR-133 expression profiles during zebrafish embryo development 17
3.2 Modulation of endogenous miR-133 affects skeletal muscle hypertrophy and atrophy in zebrafish larvae 18
3.3 miR-133 directly targets JunB 19
3.4 miR-133 suppresses JunB at the level of transcriptional in C2C12 cell line 20
3.5 Supplement of JunB mRNA could recover the phenomenon of muscle atrophy induced by miR-133 21
Chapter 4: Discussions 22
References 25

&;#8195;
List of figures

Fig 1. Time expression profiling of miR-133 during zebrafish embryonic development 30
Fig 2. Time expression profiling of miR-133 is delimited by injecting miR-133a mimic and inhibitor into zebrafish embryos 31
Fig 3. miR-133 regulates skeletal muscle atrophy and hypertrophy in zebrafish larvae. 32
Fig 4. Constructs designed for psiCHECK-2 vector to perform Dual Luciferase Assay system (4A). The sequence of two miR-133 binding site mutation (4B) 34
Fig 5. Graphical representations of JunB luciferase activity under different concentrations of miR-133a mimic transfection in HEK293T cell line 35
Fig 6. Graphical representations of JunB luciferase activity under 200nM of mimic negative control, miR-133a mimic and miR-133 inhibitor transfection in HEK293T cell line 36
Fig 7. miR-133 regulates JunB and downstream atrophy related gene expression in C2C12 cell line (7A, 7B) 37
Fig 8. miR-133 regulates JunB protein expression in C2C12 cell line. 38
Fig 9. Supplement of JunB mRNA could prevent miR-133 from inducing muscle atrophy. 39

&;#8195;
List of tables

Table 1. Tabular representation of cross-sectional area of muscle fibers in 6 days wild type and 6 days post miR-133a mimic and inhibitor microinjected zebrafish larvae. 40
Table 2.Primer list 41


References

Abdellatif, M. (2010). The role of microRNA-133 in cardiac hypertrophy uncovered. Circ Res, 106(1), 16-18.
Bakiri L, Lallemand D, Bossy-Wetzel E, &; M., Y. (2000). Cell cycle dependent variations in c-Jun and JunB phosphorylation a role in the control of cyclin D1 expression. EMBO J. 19(9):2056-68.
Bassett, D. I., &; Currie, P. D. (2003). The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet, 12 Spec No 2, R265-270.
Black, F.M., Packer, S.E., Parker, T.G., Michael, L.H., Roberts, R., Schwartz, R.J., Schneider, M.D. (1991). The vascular smooth muscle alpha-actin gene is reactivated during cardiac hypertrophy provoked by load. J Clin Invest, 88(5):1581-8.
Bonaldo, P., &; Sandri, M. (2013). Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech, 6(1), 25-39.
Braun, J., Strittmatter, K., Nubel, T., Komljenovic, D., Sator-Schmitt, M., Bauerle, T., Angel, P., Schorpp-Kistner, M. (2014). Loss of stromal JUNB does not affect tumor growth and angiogenesis. Int J Cancer, 134(6), 1511-1516.
Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V., Hoydal, M., Autore, C., Russo, M. A., Dorn, G. W., Ellingsen, O., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., Condorelli, G. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med, 13(5), 613-618.
Cassano, M., Quattrocelli, M., Crippa, S., Perini, I., Ronzoni, F., &; Sampaolesi, M. (2009). Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J Muscle Res Cell Motil, 30(7-8), 243-253.
Chalaux, E., Lopez-Rovira, T., Rosa, J. L., Bartrons, R., &; Ventura, F. (1998). JunB is involved in the inhibition of myogenic differentiation by bone morphogenetic protein-2. J Biol Chem, 273(1):537-43.
Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet, 38(2), 228-233.
Chen, J. F., Tao, Y., Li, J., Deng, Z., Yan, Z., Xiao, X., &; Wang, D. Z. (2010). microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol, 190(5), 867-879.
Ha, M. &; Kim, V. N. (2014). Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 15, 509–524.
Huang, H., &; Tindall, D. J. (2011). Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim Biophys Acta, 1813(11), 1961-1964.
Johnston, I. A. (2006). Environment and plasticity of myogenesis in teleost fish. J Exp Biol, 209(Pt 12), 2249-2264.
Lecker, S. H., Jagoe, R. T., Gilbert, A., Gomes, M., Baracos, V., Bailey, J., Price, S. R., Mitch, W. E., Goldberg, A. L. (2004). Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J, 18(1), 39-51.
Lee, K. H., &; Kim, J. R. (2012). Regulation of HGF-mediated cell proliferation and invasion through NF-kappaB, JunB, and MMP-9 cascades in stomach cancer cells. Clin Exp Metastasis, 29(3), 263-272.
Mammucari, C., Milan, G., Romanello, V., Masiero, E., Rudolf, R., Del Piccolo, Burden, S. J., Di Lisi, R., Sandri, C., Zhao, J., Goldberg, A. L., Schiaffino, S., Sandri, M.P. (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell metabolism, 6(6), 458-471.
McCarthy, J. J., &; Esser, K. A. (2006). MicroRNA-1 and microRnA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol, 102:306-313.
McCarthy, J. J., Mula, J., Miyazaki, M., Erfani, R., Garrison, K., Farooqui, A. B., . . . Peterson, C. A. (2011). Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development, 138(17), 3657-3666.
Musaro, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E. R., Sweeney, H. L., Rosentha, N. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 27(2), 195-200.
O''Rourke, J. R., Georges, S. A., Seay, H. R., Tapscott, S. J., McManus, M. T., Goldhamer, D. J., Swanson, M. S . Harfe, B. D. (2007). Essential role for Dicer during skeletal muscle development. Dev Biol, 311(2), 359-368.
Raffaello, A., Milan, G., Masiero, E., Carnio, S., Lee, D., Lanfranchi, G., Goldberg, A. L., Sandri, M. (2010). JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy. J Cell Biol, 191,101-113.
Sacheck, J. M., Hyatt, J. P., Raffaello, A., Jagoe, R. T., Roy, R. R., Edgerton, V. R., Lecker, S. H., Goldberg, A. L. (2007). Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J, 21(1), 140-155.
Sandri, M. (2004). Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell. 117(3), 279-415.
Sanger, J. W., Wang, J., Holloway, B., Du, A., &; Sanger, J. M. (2009). Myofibrillogenesis in skeletal muscle cells in zebrafish. Cell Motil Cytoskeleton, 66(8), 556-566.
Shaulian, E., &; Karin, M. (2001). AP-1 in cell proliferation and survival. Oncogene 20, 2390-2400.
Stitt, T. N., Drujan, D., Clarke, B. A., Panaro, F., Timofeyva, Y., Kline, W. O., Gonzalez, M., Yancopoulos, G. D., Glass, D. J. (2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular cell, 14(3), 395-403.
Wang, X. H. (2013). MicroRNA in myogenesis and muscle atrophy. Curr Opin Clin Nutr Metab Care, 16(3), 258-266.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔