(54.236.62.49) 您好!臺灣時間:2021/03/06 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:樊彥彣
研究生(外文):Yen-Wen Fan
論文名稱:柯西黎曼 Li-Yau-Hamilton 不等式即其應用
論文名稱(外文):CR Li-Yau-Hamilton Inequality and its Applications
指導教授:張樹城
指導教授(外文):Shu-Cheng Chang
口試委員:張德健林俊吉褚孫錦徐淑裕吳進通李瑩英
口試委員(外文):Der-Cheng ChangChun-Chi LinSun-Chin ChuShu-Yu HsuChin-Tung WuYng-Ing Lee
口試日期:2014-06-09
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:77
中文關鍵詞:擬埃爾米特Li-Yau-HamiltonGap 定理Harnack 不等式
外文關鍵詞:Li-Yau-HamiltonGap theoremCR manifoldHarnack
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
這篇文章包含三大部分,第一部分證明矩陣形式的 Li-Yau-Hamilton Harnack 不等式。第二部份延續第一部分的工作,推廣至(1,1)-form 形式的 Li-Yau-Hamilton Harnack 不等式。第三部份將應用這不等式証明柯西黎曼上的 Gap 定理。

In the first part of thesis, we first derive the CR analogue of matrix Li-Yau-Hamilton
inequality for a positive solution to the CR heat equation in a closed pseudohermitian (2n+1)-
manifold with nonnegative bisectional curvature and bitorsional tensor. We then obtain the
CR Li-Yau gradient estimate in a standard Heisenberg group. Finally, we extend the CR
matrix Li-Yau-Hamilton inequality to the case of Heisenberg groups. As a consequence, we
derive the Hessian comparison property in the standard Heisenberg group.
In the second part, we study the CR Lichnerowicz-Laplacian heat equation deformation of
(1; 1)-tensors on a complete strictly pseudoconvex CR (2n+1)-manifold and derive the linear
trace version of Li-Yau-Hamilton inequality for positive solutions of the CR Lichnerowicz-
Laplacian heat equation. We also obtain a nonlinear version of Li-Yau-Hamilton inequality
for the CR Lichnerowicz-Laplacian heat equation coupled with the CR Yamabe flow and
trace Harnack inequality for the CR Yamabe flow.
In the last part, by applying a linear trace Li-Yau-Hamilton inequality for a positive
(1; 1)-form solution of the CR Hodge-Laplace heat equation and monotonicity of the heat
equation deformation, we obtain an optimal gap theorem for a complete strictly pseudocovex
CR (2n+1)-manifold with nonnegative pseudohermitian bisectional curvature and vanishing
torsion. We prove that if the average of the Tanaka-Webster scalar curvature over a ball of
radius r centered at some point o decays as o(r^-2 ), then the manifold is flat.

1. Abstract v
2. Introduction 1
2.1. CR Li-Yau Gradient Estimate and Harnack Inequality 2
2.2. CR Matrix Li-Yau-Hamilton Inequality 4
2.3. CR Linear Trace Li-Yau-Hamilton Inequality and Gap Theorem 6
2.4. The Coupled CR Yamabe Flow 7
3. Preliminary 10
4. CR Matrix Li-Yau-Hamilton Harnack Inequality 12
4.1. CR Matrix Li-Yau-Hamilton Inequality 15
4.2. The CR Gradient Estimate and Harnack inequality in Heisenberg Groups 20
4.3. Complete noncompact case 25
5. Linear Trace Li-Yau-Hamilton inequality 31
5.1. The CR Bochner-Weitzenbock Formula 35
5.2. Linear Trace Li-Yau-Hamilton Inequality 39
5.3. Nonlinear Version for Li-Yau-Hamilton Inequality 50
6. CR Gap Theorem 58
6.1. CR Moment-Type Estimates 59
6.2. CR Lichnerowicz-Laplacian heat equation 63
6.3. Proof of CR Optimal Gap Theorem 67
Appendix A. 71
References 74

[AC] B. Andrews and J. Clutterbuck, Proof of the Fundamental Gap Conjecture, J. Am. Math. Soc. 24
(2011), 899-916.
[B] G. Ben Arous, Deloppement asymptotique du noyau de la chaleur hypoelliptique hors du cutlocus,
Ann. Sci. Ecole Norm. Sup. (4) 21 (1988) 307–331.
[BBGM] Fabrice Baudoin, Michel Bonnefont, Nicola Garofalo , and Isidro H Munive, volume and distance
comparison theorems for Sub-Riemannian manifolds, arXiv:1211.0221v1, 1 Nov 2012.
[BBN] D. Barilari, U. Boscain and R. Neel, Small-time heat kernel asymptotics at the sub-Riemannian
cut locus, J. Differential Geom. 92 (2012), no. 3, 373–416.
[BCT] C. Berenstein, D.-C. Chang and J.-Z. Tie, “Laguerre Calculus and its Application on the Heisenberg
Group”, AMS/IP Studies in Advanced Mathematics, vol. 22, AMS/IP, 2001.
[BGG] R. Beal, B. Gaveau and P. C. Greiner, Hamilton-Jacobi Theory and the Heat Kernel on Heisenberg
Groups, J. Math Pure Appl., 79 (2000), 633-689.
[BGr] R. Beals and P. C. Greiner, “Calculus on Heisenberg Manifolds”, Annals of Math. Studies no. 119,
Princeton Univ. Press, Princeton, NJ, 1988.
[BG] F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-
Riemannian manifolds with transverse symmetries. Arxiv preprint.
[CH] B. Chow and R. S. Hamilton Constrained and linear Harnack inequalities for parabolic equations,
Invent. math. 129, 213-238 (1997).
[C] B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature,
Commun. Pure and Appl. Math., XLV(1992),1003-1014.
[CC] S.-C. Chang and J.-H. Cheng The Harnack estimate for the Yamabe flow on CR manifolds of
dimension 3, Ann. Glob. Analysis and Geometry, 21 (2002), 111-121.
[CC1] S.-C. Chang and H.-L. Chiu, Nonnegativity of CR Paneitz operator and its Application to the CR
Obata’s Theorem in a Pseudohermitian (2n+1)-Manifold, J. Geom. Analysis, 19 (2009), 261-287.
[CC2] S.-C. Chang and H.-L. Chiu, On the CR Analogue of Obata’s Theorem in a Pseudohermitian
3-Manifold, Math. Ann. vol 345, no. 1 (2009), 33-51.
[CCT] D.-C. Chang, S.-C. Chang and J.-Z. Tie, Calabi-Yau Theorem and Hodge-Laplacian Heat Equation
in a Closed Strictly Pseudoconvex CR Manifold, 2013, appear in J.D.G.
[CKL1] S.-C. Chang, T.-J. Kuo and S.-H. Lai, Li-Yau Gradient Estimate and Entropy Formulae for the CR
heat equation in a Closed Pseudohermitian 3-manifold, J. Di&;curren;erential Geom. 89 (2011), 185-216.
[CKL2] S.-C. Chang, T.-J. Kuo and S.-H. Lai, CR Li-Yau Gradient Estimate and Linear Entropy Formulae
for Witten Laplacian via Bakry-Emery Pseudohermitian Ricci Curvature, submitted.
[CKT] S.-C. Chang, T.-J. Kuo and J.-Z. Tie, Yau’s Gradient Estimate and Liouville Theorem for Positive
Pseudoharmonic Functions in a Complete Pseudohermitian manifold, submitted.
[CTW] S-C Chang, J.-Z. Tie and C.-T. Wu, Subgradient Estimate and Liouville-type Theorems for the CR
Heat Equation on Heisenberg groups H^n , Asian J. Math., Vol. 14, No. 1 (2010), 041–072.
[CKW] S.-C. Chang, O. van Koert and C.-T. Wu, The Torsion Flow in a Closed Pseudohermitian 3-
manifold, 2013, preprint.75
[CCF] S.-C. Chang, T.-H. Chang and Y.-W. Fan, Linear Trace Li-Yau-Hamilton Inequality for the CR
Lichnerowicz-Laplacian Heat Equation, J. Geom. Analysis, (2013).
[CCK] S.-C. Chang, T.-H. Chang and T.-J. Kuo, Global Existence and Convergence of the CR Yamabe
Flow in a Closed Spherical CR 3-Manifold, 2013 preprint.
[CF] S.-C. Chang and Y.-W. Fan, An Optimal Gap Theorem in a Complete Strictly Pseudoconvex CR
(2n + 1)-manifold, submitted.
[CFTW] S.-C. Chang, Y.-W. Fan, Z. Tie and C.-T. Wu, Matrix Li-Yau-Hamilton Inequality for the CR
Heat Equation in Pseudohermitian (2n + 1)-manifolds, Math. Ann., (2014).
[Ca] H.-D. Cao, On Harnack inequalities for the K&;auml;hler-Ricci flow, Invent. Math. 109 (1992), 247-263.
[CN] H.-D. Cao and L. Ni, Matrix Li-Yau-Hamilton Estimates for the Heat Equation on K&;auml;hler mani-
folds, Math. Ann. 331(2005), 795-807.
[CY] H.-D. Cao and S.-T. Yau, Gradient Estimates, Harnack Inequalities and Estimates for Heat Kernels
of the Sum of Squares of Vector Fields, Math. Z. 211 (1992), 485-504.
[CG] Cheeger, J., Gromov, M. &; Taylor, M., Finite propagation speed, kernel estimates for functions of
Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom., 17
(1983), 15-33.
[Cho] W.-L. Chow : Uber System Von Lineaaren Partiellen Differentialgleichungen erster Orduung,.
Math. Ann. 117 (1939), 98-105.
[CTZ] B.-L. Chen, S.-H. Tang and X.-P. Zhu, A uniformization theorem for complete non-compact Kaehler
surfaces with positive bisectional curvature. J. Di&;curren;erential Geom. 67 (2004), no. 3, 519–570.
[CZ] Bing-Long Chen and Xi-Ping Zhu, On complete noncompact Kaehler manifolds with positive bi-
sectional curvature, Math. Ann. 327 (2003), 1-23.
[CZ2] Bing-Long Chen; Xi-Ping Zhu, A gap theorem for complete noncompact manifolds with nonnegative
Ricci curvature. Comm. Anal. Geom. 10 (2002), no. 1, 217–239.
[CaH] X. Cao and R.S. Hamilton, Di&;curren;erential Harnack Estimates for Time-Dependent Heat Equations
with Potentials, Geom. Funct. Anal. Vol. 19 (2009) 989-1000.
[D] Harold Donnelly, Uniqueness of positive solutions of the heat equation, AMS, vol. 99, No. 2, 1987.
[E] Lawrence C. Evans, Partial differential equations. Graduate studies in math. Vol 19, AMS., 2010.
[FS] G.B. Folland and E.M. Stein, Estimates for the
d-bar b complex and analysis on the Heisenberg group,
Comm. Pure Appl. Math. 27 (1974), 429-522.
[Ga] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur
certains groupes nilpotents, Acta Math., 139: 95-153(1977).
[G] P. C. Greiner, On the Laguerre calculus of left-invariant convolution operators on the Heisenberg
group, Seminaire Goulaouic-Meyer-Schwartz 1980-81, exp. XI p. 1-39.
[GS] P. C. Greiner and E. M. Stein, On the solvability of some differential operators of type b , Proc. In-
ternational Conf., Cortona 1976–77, Ann. Scuola Norm. Sup. Pisa Cl. Sci. vol. 4, 106–165(1978).
[GV] Ugo Gianazza and Vincenzo Vespri, Analytic semigroups generated by square Hormander Opera-
tors, Rend. Istit. Mat. Univ. Trieste Suppl Vol. XXVIII (1997), 201-220.
[GV2] Ugo Gianazza and Vincenzo Vespri, Generation of analytic semigroups by degenerate elliptic op-
erators, NoDEA , 4 (1997), 305-324.
[GW1] R.-E. Greene and H. Wu, H., Analysis on non–compact Kaehler manifolds, Proc. Symp. Pure.
Math. Vol 30, Part II, Amer. Math. Soc. (1977).
[GW2] R.-E. Greene and H. Wu, Gap theorems for noncompact Riemannian manifolds. Duke Math. J.
49(3) (1982), 731-756.
[GL] C. R. Graham and J. M. Lee, Smooth Solutions of Degenerate Laplacians on Strictly Pseudoconvex
Domains, Duke Math. J., 57 (1988), 697-720.
[Gr] A. Greenleaf: The first eigenvalue of a Sublaplacian on a Pseudohermitian manifold. Comm. Part.
Di&;curren;. Equ. 10(2) (1985), no.3 191–217.
[H1] R. S. Hamilton, Formation of singularities for the Ricci flow, Surv. Differ. Geom., vol. 2, Int. Press,
Boston, MA, 1995, pp. 7-136.76
[H1] R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom., 37(1):225–243,
1993.
[H2] R. S. Hamilton, R.:A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1 (1993),
113–126.
[H3] R. S. Hamilton, Harnack estimate for the mean curvature flow. J. Differential Geom. 41(1995), no.
1, 215–226.
[Hu] A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic
hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math., 56: 165-173
(1976).
[HD] Harold Donnelly, Uniqueness of positive solutions of the heat equation, AMS, vol. 99, No. 2, (1987)
[J1] D.S. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, I and II, J.
Functional Anal. 43 (1981), 97-141 and 429-522.
[J2] D.S. Jerison, Boundary regularity in the Dirichlet problem for b on CR manifolds, C.P.A.M. vol.
XXXVI (1983), 143-181.
[JS] D. Jerison and A. S&;aacute;nchez-Calle, Estimates for the Heat Kernel for the Sum of Squares of Vector
Fields, Indiana J. Math. 35 (1986), 835-854.
[KL] L. Karp and P. Li, The heat equation on complete Riemannian manifolds, unpublished.
[KS] A. Koranyi and N. Stanton, Liouville Type Theorems for Some Complex Hypoelliptic Operators,
J. Funct. Anal. 60 (1985), 370-377.
[LA] Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, PNLDE
16, Birkh&;auml;user, Berlin, (1995).
[Le] R. L&;eacute;andre, Majoration en temps petit de la densit&;eacute;e d’une di usion degeneree, Probab. Theory
Related Fields, 74 (1987), 289-294.
[Li] P.Li, Geometry analysis, Cambridge Studies in Advanced Mathematics, 134, Cambridge University
Press, Cambridge, (2012).
[L1] J. M. Lee, Pseudo-Einstein Structure on CR Manifolds, Amer. J. Math. 110 (1988), 157-178.
[L2] J. M. Lee, The Fefferman Metric and Pseudohermitian Invariants, Trans. Amer. Math. Soc. 296
(1986), 411-429.
[LT] P. Li. and L.-F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. math.
105 (1991) 1-46.
[LY] P. Li and S.-T. Yau, On the parabolic kernel of the Schr&;ouml;dinger operator, Acta Math. 156 (1986)
153-201.
[M] Isidro H. Munive, Stochastic completeness and volume growth in sub-Riemannian manifolds, man-
uscripta math. 138 (2012), 299-313.
[Mo] C. Morrey, Multiple Integrals in Calculus of Variations. Springer-Verlag, New York, (1966).
[Mok1] N. Mok, The uniformization theorem for compact K&;auml;hler manifolds of nonnegative holomorphic
bisectional curvature, J. Diff. Geom. 27 (1988), 179-214.
[Mok2] N. Mok, An embedding theorem of complete K&;auml;hler manifolds of positive bisectional curvature
onto affine algebraic varieties, Bull. Soc. Math. France. 112 (1984),197-258.
[MR] R.R. Miner, Spherical CR manifolds with amenable holonomy, Int. J. Math. 1 (1990), 479-510.
[MSY] N. Mok, Y.-T. Siu and S.-T. Yau, The Poincar&;eacute;-Lelong equation on complete K&;auml;hler manifolds.
Compos. Math. 44 (1981), 183-218.
[N1] L. Ni, A Monotonicity Formula on Complete K&;auml;hler Manifolds with Nonnegative Bisectional Cur-
vature, J. Amer. Math. Soc., 17 (2004), 909–946.
[N2] L. Ni, An Optimal Gap Theorem, Invent Math. Vol 189 (2012), 737–761.
[N3] L. Ni, The Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over
complete noncompact K&;auml;hler manifolds. Indiana Univ. Math. J. 51 (2002), 679-704.
[N4] L. Ni, Vanishing theorems on complete Kahler manio&;#8225;ds and their applications. J. Di&;curren;er. Geom.
50 (1998), 89-122.
[N5] L. Ni, Erratum: An Optimal gap theorem, Invent. Math. 189, 737-761(2012).[NT1] L. Ni, and L.-F. Tam, Plurisubharmonic functions and the K&;auml;hler-Ricci flow, Amer. J. Math. 125
(2003), 623-654.
[NT2] L. Ni and L.-F. Tam, Plurisubharmonic functions and the structure of complete K&;auml;hler manifolds
with nonnegative curvature. J. Differential Geom. 64 (2003), no.3, 457-524.
[NT3] L. Ni and L.-F. Tam, K&;auml;hler-Ricci flow and Poincare-Lelong equation, Comm. Anal. Geom. vol.
12 (2004), no. 1, 111-114.
[NT4] L. Ni and L.-F. Tam, Liouville properties of plurisubharmonic functions, arXiv:math/0212364v1
[NN] L. Ni and Y.-Y. Niu, Sharp Differential estimates of Li-Yau-Hamilton type for Positive (p,p)-forms
on K&;auml;hler manifolds, Commum. Pure Appl. Math. 64 (2011), 920-974.
[P] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-
Verlag, New York, (1983).
[R] Michael Renardy and Robert C. Rogers, An introduction to partial differential equations, Springer-
Verlag, New York, (2004).
[SH] H. Bruce Stewart, generation of analytic semigroups by strongly elliptic operators, Trans. Amer.
Math. Soc., vol 199 (1974), 141-162.
[SC] A. S&;aacute;nchez-Calle, Fundamental Solutions and Geometry of the Sum of Squares of Vector Fields,
Invent. Math. 78 (1984), 143-160
[SY] R. Schoen and S.-T. Yau, Lectures on Differential Geometry, International Press, 1994.
[S] Y.-T. Siu, Pseudoconvexity and the problem of Levi, Bull. Amer Math. Soc. 84 (1978), 481-512.
[Si] L. Simon, Schauder estimates by scaling. Calc. Var. Partial Differ. Equ. 5 (1997), 391-407.
[SR] R. Strichartz, Sub-Riemannian geometry, Journ. Diff. Geom., 24 (1986), 221-263. and Corrections
30(2) (1989), 595-596.
[T] T. J. S. Taylor, Off diagonal asymptotics of hypoelliptic diffusion equations and singular Riemann-
ian geometry, Pacific J. Math., 136 (1989), 379-399.
[V] S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable
coefficients, Comm. Pure Appl. Math., 20 (1967), 431-455.
[Y] S. -T. Yau, Seminar on Differential Geometry, edited, Annals of Math. Studies 102, Princeton,
New Jersey, 1982.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔