|
[AC] B. Andrews and J. Clutterbuck, Proof of the Fundamental Gap Conjecture, J. Am. Math. Soc. 24 (2011), 899-916. [B] G. Ben Arous, Deloppement asymptotique du noyau de la chaleur hypoelliptique hors du cutlocus, Ann. Sci. Ecole Norm. Sup. (4) 21 (1988) 307–331. [BBGM] Fabrice Baudoin, Michel Bonnefont, Nicola Garofalo , and Isidro H Munive, volume and distance comparison theorems for Sub-Riemannian manifolds, arXiv:1211.0221v1, 1 Nov 2012. [BBN] D. Barilari, U. Boscain and R. Neel, Small-time heat kernel asymptotics at the sub-Riemannian cut locus, J. Differential Geom. 92 (2012), no. 3, 373–416. [BCT] C. Berenstein, D.-C. Chang and J.-Z. Tie, “Laguerre Calculus and its Application on the Heisenberg Group”, AMS/IP Studies in Advanced Mathematics, vol. 22, AMS/IP, 2001. [BGG] R. Beal, B. Gaveau and P. C. Greiner, Hamilton-Jacobi Theory and the Heat Kernel on Heisenberg Groups, J. Math Pure Appl., 79 (2000), 633-689. [BGr] R. Beals and P. C. Greiner, “Calculus on Heisenberg Manifolds”, Annals of Math. Studies no. 119, Princeton Univ. Press, Princeton, NJ, 1988. [BG] F. Baudoin and N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub- Riemannian manifolds with transverse symmetries. Arxiv preprint. [CH] B. Chow and R. S. Hamilton Constrained and linear Harnack inequalities for parabolic equations, Invent. math. 129, 213-238 (1997). [C] B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Commun. Pure and Appl. Math., XLV(1992),1003-1014. [CC] S.-C. Chang and J.-H. Cheng The Harnack estimate for the Yamabe flow on CR manifolds of dimension 3, Ann. Glob. Analysis and Geometry, 21 (2002), 111-121. [CC1] S.-C. Chang and H.-L. Chiu, Nonnegativity of CR Paneitz operator and its Application to the CR Obata’s Theorem in a Pseudohermitian (2n+1)-Manifold, J. Geom. Analysis, 19 (2009), 261-287. [CC2] S.-C. Chang and H.-L. Chiu, On the CR Analogue of Obata’s Theorem in a Pseudohermitian 3-Manifold, Math. Ann. vol 345, no. 1 (2009), 33-51. [CCT] D.-C. Chang, S.-C. Chang and J.-Z. Tie, Calabi-Yau Theorem and Hodge-Laplacian Heat Equation in a Closed Strictly Pseudoconvex CR Manifold, 2013, appear in J.D.G. [CKL1] S.-C. Chang, T.-J. Kuo and S.-H. Lai, Li-Yau Gradient Estimate and Entropy Formulae for the CR heat equation in a Closed Pseudohermitian 3-manifold, J. Di&;curren;erential Geom. 89 (2011), 185-216. [CKL2] S.-C. Chang, T.-J. Kuo and S.-H. Lai, CR Li-Yau Gradient Estimate and Linear Entropy Formulae for Witten Laplacian via Bakry-Emery Pseudohermitian Ricci Curvature, submitted. [CKT] S.-C. Chang, T.-J. Kuo and J.-Z. Tie, Yau’s Gradient Estimate and Liouville Theorem for Positive Pseudoharmonic Functions in a Complete Pseudohermitian manifold, submitted. [CTW] S-C Chang, J.-Z. Tie and C.-T. Wu, Subgradient Estimate and Liouville-type Theorems for the CR Heat Equation on Heisenberg groups H^n , Asian J. Math., Vol. 14, No. 1 (2010), 041–072. [CKW] S.-C. Chang, O. van Koert and C.-T. Wu, The Torsion Flow in a Closed Pseudohermitian 3- manifold, 2013, preprint.75 [CCF] S.-C. Chang, T.-H. Chang and Y.-W. Fan, Linear Trace Li-Yau-Hamilton Inequality for the CR Lichnerowicz-Laplacian Heat Equation, J. Geom. Analysis, (2013). [CCK] S.-C. Chang, T.-H. Chang and T.-J. Kuo, Global Existence and Convergence of the CR Yamabe Flow in a Closed Spherical CR 3-Manifold, 2013 preprint. [CF] S.-C. Chang and Y.-W. Fan, An Optimal Gap Theorem in a Complete Strictly Pseudoconvex CR (2n + 1)-manifold, submitted. [CFTW] S.-C. Chang, Y.-W. Fan, Z. Tie and C.-T. Wu, Matrix Li-Yau-Hamilton Inequality for the CR Heat Equation in Pseudohermitian (2n + 1)-manifolds, Math. Ann., (2014). [Ca] H.-D. Cao, On Harnack inequalities for the K&;auml;hler-Ricci flow, Invent. Math. 109 (1992), 247-263. [CN] H.-D. Cao and L. Ni, Matrix Li-Yau-Hamilton Estimates for the Heat Equation on K&;auml;hler mani- folds, Math. Ann. 331(2005), 795-807. [CY] H.-D. Cao and S.-T. Yau, Gradient Estimates, Harnack Inequalities and Estimates for Heat Kernels of the Sum of Squares of Vector Fields, Math. Z. 211 (1992), 485-504. [CG] Cheeger, J., Gromov, M. &; Taylor, M., Finite propagation speed, kernel estimates for functions of Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential Geom., 17 (1983), 15-33. [Cho] W.-L. Chow : Uber System Von Lineaaren Partiellen Differentialgleichungen erster Orduung,. Math. Ann. 117 (1939), 98-105. [CTZ] B.-L. Chen, S.-H. Tang and X.-P. Zhu, A uniformization theorem for complete non-compact Kaehler surfaces with positive bisectional curvature. J. Di&;curren;erential Geom. 67 (2004), no. 3, 519–570. [CZ] Bing-Long Chen and Xi-Ping Zhu, On complete noncompact Kaehler manifolds with positive bi- sectional curvature, Math. Ann. 327 (2003), 1-23. [CZ2] Bing-Long Chen; Xi-Ping Zhu, A gap theorem for complete noncompact manifolds with nonnegative Ricci curvature. Comm. Anal. Geom. 10 (2002), no. 1, 217–239. [CaH] X. Cao and R.S. Hamilton, Di&;curren;erential Harnack Estimates for Time-Dependent Heat Equations with Potentials, Geom. Funct. Anal. Vol. 19 (2009) 989-1000. [D] Harold Donnelly, Uniqueness of positive solutions of the heat equation, AMS, vol. 99, No. 2, 1987. [E] Lawrence C. Evans, Partial differential equations. Graduate studies in math. Vol 19, AMS., 2010. [FS] G.B. Folland and E.M. Stein, Estimates for the d-bar b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. [Ga] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents, Acta Math., 139: 95-153(1977). [G] P. C. Greiner, On the Laguerre calculus of left-invariant convolution operators on the Heisenberg group, Seminaire Goulaouic-Meyer-Schwartz 1980-81, exp. XI p. 1-39. [GS] P. C. Greiner and E. M. Stein, On the solvability of some differential operators of type b , Proc. In- ternational Conf., Cortona 1976–77, Ann. Scuola Norm. Sup. Pisa Cl. Sci. vol. 4, 106–165(1978). [GV] Ugo Gianazza and Vincenzo Vespri, Analytic semigroups generated by square Hormander Opera- tors, Rend. Istit. Mat. Univ. Trieste Suppl Vol. XXVIII (1997), 201-220. [GV2] Ugo Gianazza and Vincenzo Vespri, Generation of analytic semigroups by degenerate elliptic op- erators, NoDEA , 4 (1997), 305-324. [GW1] R.-E. Greene and H. Wu, H., Analysis on non–compact Kaehler manifolds, Proc. Symp. Pure. Math. Vol 30, Part II, Amer. Math. Soc. (1977). [GW2] R.-E. Greene and H. Wu, Gap theorems for noncompact Riemannian manifolds. Duke Math. J. 49(3) (1982), 731-756. [GL] C. R. Graham and J. M. Lee, Smooth Solutions of Degenerate Laplacians on Strictly Pseudoconvex Domains, Duke Math. J., 57 (1988), 697-720. [Gr] A. Greenleaf: The first eigenvalue of a Sublaplacian on a Pseudohermitian manifold. Comm. Part. Di&;curren;. Equ. 10(2) (1985), no.3 191–217. [H1] R. S. Hamilton, Formation of singularities for the Ricci flow, Surv. Differ. Geom., vol. 2, Int. Press, Boston, MA, 1995, pp. 7-136.76 [H1] R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom., 37(1):225–243, 1993. [H2] R. S. Hamilton, R.:A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1 (1993), 113–126. [H3] R. S. Hamilton, Harnack estimate for the mean curvature flow. J. Differential Geom. 41(1995), no. 1, 215–226. [Hu] A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math., 56: 165-173 (1976). [HD] Harold Donnelly, Uniqueness of positive solutions of the heat equation, AMS, vol. 99, No. 2, (1987) [J1] D.S. Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberg group, I and II, J. Functional Anal. 43 (1981), 97-141 and 429-522. [J2] D.S. Jerison, Boundary regularity in the Dirichlet problem for b on CR manifolds, C.P.A.M. vol. XXXVI (1983), 143-181. [JS] D. Jerison and A. S&;aacute;nchez-Calle, Estimates for the Heat Kernel for the Sum of Squares of Vector Fields, Indiana J. Math. 35 (1986), 835-854. [KL] L. Karp and P. Li, The heat equation on complete Riemannian manifolds, unpublished. [KS] A. Koranyi and N. Stanton, Liouville Type Theorems for Some Complex Hypoelliptic Operators, J. Funct. Anal. 60 (1985), 370-377. [LA] Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, PNLDE 16, Birkh&;auml;user, Berlin, (1995). [Le] R. L&;eacute;andre, Majoration en temps petit de la densit&;eacute;e d’une di usion degeneree, Probab. Theory Related Fields, 74 (1987), 289-294. [Li] P.Li, Geometry analysis, Cambridge Studies in Advanced Mathematics, 134, Cambridge University Press, Cambridge, (2012). [L1] J. M. Lee, Pseudo-Einstein Structure on CR Manifolds, Amer. J. Math. 110 (1988), 157-178. [L2] J. M. Lee, The Fefferman Metric and Pseudohermitian Invariants, Trans. Amer. Math. Soc. 296 (1986), 411-429. [LT] P. Li. and L.-F. Tam, The heat equation and harmonic maps of complete manifolds, Invent. math. 105 (1991) 1-46. [LY] P. Li and S.-T. Yau, On the parabolic kernel of the Schr&;ouml;dinger operator, Acta Math. 156 (1986) 153-201. [M] Isidro H. Munive, Stochastic completeness and volume growth in sub-Riemannian manifolds, man- uscripta math. 138 (2012), 299-313. [Mo] C. Morrey, Multiple Integrals in Calculus of Variations. Springer-Verlag, New York, (1966). [Mok1] N. Mok, The uniformization theorem for compact K&;auml;hler manifolds of nonnegative holomorphic bisectional curvature, J. Diff. Geom. 27 (1988), 179-214. [Mok2] N. Mok, An embedding theorem of complete K&;auml;hler manifolds of positive bisectional curvature onto affine algebraic varieties, Bull. Soc. Math. France. 112 (1984),197-258. [MR] R.R. Miner, Spherical CR manifolds with amenable holonomy, Int. J. Math. 1 (1990), 479-510. [MSY] N. Mok, Y.-T. Siu and S.-T. Yau, The Poincar&;eacute;-Lelong equation on complete K&;auml;hler manifolds. Compos. Math. 44 (1981), 183-218. [N1] L. Ni, A Monotonicity Formula on Complete K&;auml;hler Manifolds with Nonnegative Bisectional Cur- vature, J. Amer. Math. Soc., 17 (2004), 909–946. [N2] L. Ni, An Optimal Gap Theorem, Invent Math. Vol 189 (2012), 737–761. [N3] L. Ni, The Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact K&;auml;hler manifolds. Indiana Univ. Math. J. 51 (2002), 679-704. [N4] L. Ni, Vanishing theorems on complete Kahler manio&;#8225;ds and their applications. J. Di&;curren;er. Geom. 50 (1998), 89-122. [N5] L. Ni, Erratum: An Optimal gap theorem, Invent. Math. 189, 737-761(2012).[NT1] L. Ni, and L.-F. Tam, Plurisubharmonic functions and the K&;auml;hler-Ricci flow, Amer. J. Math. 125 (2003), 623-654. [NT2] L. Ni and L.-F. Tam, Plurisubharmonic functions and the structure of complete K&;auml;hler manifolds with nonnegative curvature. J. Differential Geom. 64 (2003), no.3, 457-524. [NT3] L. Ni and L.-F. Tam, K&;auml;hler-Ricci flow and Poincare-Lelong equation, Comm. Anal. Geom. vol. 12 (2004), no. 1, 111-114. [NT4] L. Ni and L.-F. Tam, Liouville properties of plurisubharmonic functions, arXiv:math/0212364v1 [NN] L. Ni and Y.-Y. Niu, Sharp Differential estimates of Li-Yau-Hamilton type for Positive (p,p)-forms on K&;auml;hler manifolds, Commum. Pure Appl. Math. 64 (2011), 920-974. [P] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer- Verlag, New York, (1983). [R] Michael Renardy and Robert C. Rogers, An introduction to partial differential equations, Springer- Verlag, New York, (2004). [SH] H. Bruce Stewart, generation of analytic semigroups by strongly elliptic operators, Trans. Amer. Math. Soc., vol 199 (1974), 141-162. [SC] A. S&;aacute;nchez-Calle, Fundamental Solutions and Geometry of the Sum of Squares of Vector Fields, Invent. Math. 78 (1984), 143-160 [SY] R. Schoen and S.-T. Yau, Lectures on Differential Geometry, International Press, 1994. [S] Y.-T. Siu, Pseudoconvexity and the problem of Levi, Bull. Amer Math. Soc. 84 (1978), 481-512. [Si] L. Simon, Schauder estimates by scaling. Calc. Var. Partial Differ. Equ. 5 (1997), 391-407. [SR] R. Strichartz, Sub-Riemannian geometry, Journ. Diff. Geom., 24 (1986), 221-263. and Corrections 30(2) (1989), 595-596. [T] T. J. S. Taylor, Off diagonal asymptotics of hypoelliptic diffusion equations and singular Riemann- ian geometry, Pacific J. Math., 136 (1989), 379-399. [V] S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., 20 (1967), 431-455. [Y] S. -T. Yau, Seminar on Differential Geometry, edited, Annals of Math. Studies 102, Princeton, New Jersey, 1982.
|