跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉書銘
研究生(外文):Shu-Ming Liu
論文名稱:探討由最小-最大定理證明威爾莫猜想
論文名稱(外文):A survey on proof of Willmore conjecture by min-max theory
指導教授:張樹城
口試委員:陳瑞堂吳進通
口試日期:2014-05-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:28
中文關鍵詞:威爾莫猜想最小最大定理極小曲面
外文關鍵詞:Willmore conjecturemin-max theoryminimal surface
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2012年,Fernando C.Marques和Andre Neves所著的論文:Min-max theory and Willmore conjecture成功地證明了1965年由Willmore所提出著名的猜想。他們使用了幾何測度論的方法並且應用Min-max theory給出一個漂亮的證明方法,其中特別的是如何造出能夠使用Min-max theory的canonical family,這個是整篇論文中最重要的部分;我們將會在本文中說明如何造出這樣的canonical family,此外也會將一些Willmore猜想相關的性質附上並且補上他們的證明。


In 2012, the thesis: Min-max theory and Willmore conjecture wrote by Fernando C.Marques and Andre Neves. Which successful proof the well-known Willmore conjecture.
They used the method of geometric measure theory and application of Min-max theory gives a nice proof, which is how to create a special ability to use Min-max theory of canonical family, this is the whole thesis is the most important part; we will explain how to create such a canonical family in this article; on the other hand, we will addition to some property of the Willmore conjecture and their proof.


誌謝………………………………………………………………………………… i
中文摘要………………………………………………………………………… ii
英文摘要………………………………………………………………………… iii
第一章 Introduction…………………………………………………………… 1
第二章 Some property of the Willmore energy……………………………… 3
第三章 Min-max theory……………………………………………………… 7
第四章 Construct the canonical family and Min-max theory………………… 9
第五章 Proof of the main theorem…………………………………………… 22
參考文獻………………………………………………………………………… 28


F. Coda Marques and A. Neves, Min-max theory and the Willmore conjecture. To appear in Annals of Mathematics.
A. Ros, The Willmore conjecture in the real projective space, Math. Res. Lett. 6(1999),487-493.
P. Topping, Towards the Willmore conjecture, Calc. Var. Partial Differential Equations 11 (2000), 361-393.
F. Urbano, Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc. 108 (1990), 989-992.
L.Simon , Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, (1983).
T. J. Willmore, Note on embedded surfaces, An. Sti. Univ. "Al. I. Cuza" Iasi Sect. I a Mat. (N.S.) 11B (1965) 493-496.
T. J. Willmore, Riemannian Geometry, Oxford, England : Clarendon Press ; New York : Oxford University Press, 1993
M. Bauer and E. Kuwert, Existence of minimaizing Willmore surfaces of prescribed genus, Int. Math. Res. Not. (2003), 553-576.
B. Lawson, Complete minimal surfaces in S3, Ann. of Math. (2) 92 (1970).
E.Kuwert, Y.Li, and R. Schatzle, The large genus limit of the infimum of the Willmore energy, Amer. J. Math. 132 (2010), 37-51.
T. J. Willmore, Mean curvature of Riemannian immersions, J. London Math. Soc.(2) 3 1971 307-310.
K.Shiohama and R. Takagi, A characterization of a standard torus in E3, J. Differential Geometry 4 1970 477-485.
B-Y. Chen, On the total curvature of immersed manifolds. VI. Submanifolds of finite type and their applications, Bull. Inst. Math. Acad. Sinica 11 (1983), 309-328.
J. Langer and D. Singer, Curves in the hyperbolic plane and mean curvature of tori in 3-space, Bull. London Math. Soc. 16 (1984), 531-534.
P.Li and S-T. Yau , A new conformal invariant and its applications to the Wilmore conjecture and the first eigenvalue of compact surface , Invent. Math. 69(1982)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top