跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 12:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱茂榕
研究生(外文):Mao-Long Chu
論文名稱:自再潤濕流體於迴路式熱管之熱傳增強研究
論文名稱(外文):Heat Transfer Enhancement of Loop Heat Pipe with Self-Rewetting fluid
指導教授:陳瑤明
指導教授(外文):Yau-Ming Chen
口試委員:吳聖俊葉建志
口試委員(外文):Sheng-Jyun WuChien-Chih Yeh
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
中文關鍵詞:迴路式熱管自再潤濕流體熱傳增強
外文關鍵詞:Loop heat pipeSelf-rewetting fluidHeat transfer enhancement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文運用自再潤濕流體(Self-Rewetting Fuild),應用於迴路式熱管,探討其對熱傳性能影響效應。自再潤濕流體具有改變表面張力之線性關係之能力,可將較冷液體主動推送到加熱面,有與一般流體不同之特性,可延緩乾涸現象發生。其中,自再潤濕流體添加物之成份與濃度為十分重要參數,因此,本文將對自再潤濕流體進行不同濃度和不同成分的實驗,探討其熱傳增強效應。
實驗結果顯示,添加自再潤濕流體能顯著提升迴路式熱管的性能,包括臨界熱通量與熱阻值。在不同成分的實驗中,我們選用了丁、戊、己三種醇類,並發現在添加醇類水溶液後,己醇的表面張力下降幅度最小,轉折點最早,其熱阻值達到0.32℃/W,在200W以前具有最低的操作溫度及熱阻值。在濃度的實驗中發現,最佳濃度為醇類溶於水中之標準狀態下的最大溶解度。添加戊醇2.2%水溶液,臨界熱負載可達到400W,系統總熱阻為0.33℃/W。其中,以添加丁醇6%水溶液為佳,臨界熱負載可達到500W,系統總熱阻最低達到0.26℃/W。相較於純水之工作流體的迴路式熱管之性能,熱通量提升了100%,熱阻降低了30%,顯見,自再潤濕流體具有提升迴路式熱管熱傳性能的潛力。


The objective of this study is the application of self-rewetting fluid as the working fluid on loop heat pipe (LHP), with sintered copper as the chosen capillary structure material; this study also investigates the effect of using different contents and concentrations of self-rewetting fluid on heat transfer performances of LHP as well as compares the results with those from using water as working fluid. Previous studies have shown that using self-rewetting fluid as working fluid can enhance the heat transfer mechanisms of pool boiling, traditional heat pipes, and wickless heat pipes. Compared to using pure substance as working fluid, where the surface tension decreases linearly with increasing temperature, self-rewetting fluid’s surface tension has a non-linear relationship with temperature changes; therefore, at a certain temperature, the self-rewetting fluid’s surface tension increases with increasing temperature, resulting in the Marangoni effect, and the condensed liquid can be transported to the heating surface, delaying the occurrence of dry out and thus increasing the critical heat load.
Concerning the effect of varying the concentration of butanol and petanol aqueous solutions on heat transfer performance of LHP, butanol concentrations ranging from 2% to 8% is investigated, and pentanol concentrations ranging from 1% to 3% is investigated. Experimental results show that 6% butanol aqueous solution results in the best heat transfer performance of LHP; compared with that of water, the critical heat load is increased by 100% and the total thermal resistance is decreased on average by 30%.
Concerning the effect of changing the components of self-rewetting working fluid, the fluids considered are butanol, pentanol, hexanol, with the concentration of each being the maximum solubility concentration in water under standard conditions. Experimental results show that, compared with those from using water as working fluid, using self-rewetting fluid can allow the total thermal resistance of LHP system to decrease, increasing the critical heat load. Concerning the heat transfer performance of different self-rewetting fluids, under operating temperature of 90°C or lower, hexanol aqueous solution achieves the largest heat load of 200W and lowest total thermal resistance of 0.33°C/W; at operating temperatures higher than 90°C, hexanol aqueous solution has already reach the critical heat load, causing the system to be unstable, but butanol aqueous solution achieves the best results, with maximum critical heat load of 500W and minimum total thermal resistance of 0.26°C/W. Therefore, after analysis of the heat transfer performance of various self-rewetting fluids, butanol water solution has the largest operating temperature range, highest critical heat load, and lowest total thermal resistance, indicating that butanol aqueous solution is the most effective in enhancing the heat transfer performance of LHP.


目錄
學位論文口試委員會審定書 i
誌謝 iii
中文摘要 v
Abstract vi
目錄 ix
圖目錄 xiii
表目錄 xv
符號說明 xvii
第一章緒論 1
1-1前言 1
1-1.1傳統熱管 1
1-1.2毛細泵吸環路 3
1-1.3迴路式熱管 4
1-1.4馬蘭哥尼效應 9
1-1.5自再潤濕流體 10
1-2文獻回顧 14
1-3研究目的 17
第二章迴路式熱管的操作原理與限制 18
2-1迴路式熱管的操作基本原理 18
2-2系統的操作限制 20
2-2.1毛細限制 20
2-2.2啟動限制 21
2-2.3液體過冷限制 21
2-2.4補償室體積限制 22
2-3迴路式熱管的熱阻分析 23
2-3.1蒸發器熱阻 23
2-3.2蒸汽段熱阻 24
2-3.3冷凝器熱阻 25

第三章實驗設備與方法 26
3-1實驗材料與製造設備 26
3-1.1實驗材料 26
3-1.2實驗藥品 27
3-1.3製造設備 27
3-2毛細結構製作 29
3-3毛細結構內部參數量測 31
3-3.1孔隙度 31
3-3.2孔徑分布 32
3-3.3滲透度 34
3-4迴路式熱管的測試設備與性能評估 37
3-4.1測試設備 37
3-4.2安裝步驟 37
3-4.3測試步驟 37
3-4.4性能評估 38
3-5表面張力量測方法……………………………………………………39
3-6誤差分析 42
3-7迴路式熱管的系統參數 43

第四章實驗設計方法 44
4-1自再潤濕流體的濃度變化 44
4-2自再潤濕流體的成分變化 45

第五章結果與討論 46
5-1表面張力值……………………………………………………………46
5-2自再潤濕流體濃度變化對熱傳行為影響 48
5-3自再潤濕流體成分變化對熱傳行為影響 52

第六章結論 54
結論 54
建議 56
參考文獻 57
附錄 61
附錄A 不準度分析 61
附錄B 熱電偶校正曲線 65
附錄C 實驗測試數據 68
附錄D 實驗設備與測試系統 72


[1]Y.F Gerasimov, G. T. Chogolev, and Y.F. Maidanik, “Heat Pipe.” USSR Inventor''s Certificate 4492131974, 1974.
[2]Y. F. Maydanik, S.V.Vershinin, V.F. Kholodov, and Y.E. Dolgrev, “Heat Transfer Apparatus,” U.S. Patent 4515209, 1984.
[3]Y.F. Maidanik, Yu.G. Fershtater, and V.G. Pastukhov, “Loop Heat Pipes: Development, Investigation and Elements of Engineering Calculations,” Ural Division of the USSR Academy of Sciences, 1989.
[4]Y. F. Maidanik, Y. G. Fershtater, and K. A. Goncharov, “Capillary Pumped Loop for the Systems of Thermal Regulation of Spacecraft,” in Proc. of 4th European Symposium on Space Environmental Control Systems, Florence, Italy, 1991, vol. 1, pp. 87-92.
[5]Yu. F. Maydanik, Y.G. Fershtater, and V.G. Pastukhov, “Development and Investigation of Two-Phase Loopswith High-Pressure Capillary Pumps for Space Application,” in Proc.of the 8th International Heat Pipe Conference, Beijing, China, Sept. 14-19, 1992, pp.425-433.
[6]D. Wolf et al., "Loop Heat Pipes - Their Performance and Potential,"SAE Technical Paper 941575, 1994. doi:10.4271/941575.
[7]M. Nikitkin and B. Cullimore, “CPL and LHP Technologies: What are the Differences, What are the Similarities,” SAE Technical Paper 981587, 1998, doi:10.4271/981587.
[8]Q. Liao and T.S. Zhao, “Evaporative heat transfer in a capillary structure heated by a grooved block,” J. Thermophys. Heat Tr., vol. 13, no. 1, pp. 126-133, 1999

[9]K.T. Feldman, D.L. Noren, “Design of heat pipe cooler laser mirrors with inverted meniscus evaporator wick”,AIAA Paper, no.148, 1980.
[10]S.W. Wee, K.D.Kihm, K.P.Hallinan, ”Effects of the liquid polarity and the wall slip on the heat and mass transport characteristics of the micro-scale evaporating transition film”, Int.J. Heat Mass Transfer , vol.48, pp. 265-278,2005.
[11]James Thomson, “On certain curious motions observable on the surfaces of wine and other alcoholic liquours,” Philosophical Magazine Series 4, vol. 10, issue 67, pp. 330-333, 1855.
[12]Marangoni, C. G. M., “Sull Expansiome dell Goccie di un Liquido Galleggianti sulla Superficie di Altro Liquido,” Tipografia del Fratelli Fusi, Pavia, 1865.
[13]Monti, R, “Physics of Fluids in Microgravity,” Taylor and Francis, 2001.
[14]Van P. Carey, “Liquid–Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment,” Taylor and Francis, London, 2001.
[15]R Vochten, G Petre, “Study of the heat of reversible adsorption at the air-solution interface,” J. Colloid and Interface Science, vol. 42, issue 2, pp. 320–327, 1973.
[16]Ahmed S., V.P. Carey, “Effects of surface orientation on the pool boiling heat transfer in water/2-propanol mixtures,” J. Heat Transfer, vol. 121,no.1, pp. 80-88, 1999.
[17]N.Zhang, “Innovative heat pipe systems using a new working fluid,”International Communications in Heat and Mass Transfer, vol. 28, issue 8,pp.1025-1033,2001.
[18]S. Chen, P. Liu, Z. Zhu, Q. Liu, “Experimental Study on Surface Tension of Several Alcohol Aqueous Solutions,” Journal of Beijing Jiaotong University, vol. 32, no. 1, 2008.
[19]N. d. Francescantonioa, R.Savinoa,Y.Abe, “New alcohol solutions for heat pipes: Marangoni effect and heat transfer enhancement,” Int.J. Heat Mass Transfer, vol. 51, issue 25-26, pp. 6199–6207, 2008.
[20]M Morovati, H Bindra, S Esaki, M Kawaji, “Enhancement of Pool Boiling and Critical Heat Flux in Self-Rewetting Fluids at Above Atmospheric Pressures,”in Proc. of 8th ASME-JSME Thermal Engineering Joint Conference, vol. 1, pp. 1849-1854, 2011.
[21]R. J. Moffat, “Describing the uncertainties in experimental results”, Experimental
[22]Thermal Fluid Science, vol.1, no.1, pp. 3-17, 1988.
[23]Abe Y., Iwasaki A., Tanaka K., “Microgravity Experiments on Phase Change of Self-Rewetting Fluids,” Ann. N.Y. Acad. Sci, vol. 1027, pp. 269-285, 2004..
[24]Abe Y., “Thermal management with phase change of self-rewetting
fluids”,Proceeding of the ASME Heat transfer Division 2005[c]. Orlando: ASME, 2005
[25]Abe Y., “Self-Rewetting Fluids,” Ann. N.Y. Acad. Sci, vol. 1077, pp. 650-667, 2006
[26]Abe Y. “Terrestrial and microgravity applications of self-rewetting fluids ,”Microgravity Sci. Technol , Vol.19, Issue 3-4, pp. 11-12, 2007.
[27]Fumoto K, Kawaji M, “Performance improvement in pulsating heat pipes using a self-rewetting fluid”,Proceedings of the ASME Summer Heat Transfer. San Francisco,Vol.3, pp. 359-365 , 2009.
[28]Fumoto K, Kawaji M, Kawanami T.“Effect of self-rewetting fluids on pulsating heat pipe thermal performance”,Heat and Mass Transfer International Conference. Paper No. MNHMT2009-18202,Vol.3, pp. 381-387, 2010.
[29]Fumoto K, Kawaji M, Kawanami T, “Study on a pulsating heat pipe with self-rewetting fluid ,”Journal of Electron packag, Vol.132, Issue 3, pp. 132-134, 2010.
[30]Savino R, Abe Y, Fortezza R, “Heat pipes with self-rewetting fluids under low-gravity conditions. ” Microgr. Sci. Technol, Vol.19, Issue 3-4, pp. 75-77, 2007.
[31]Savino R, Cecere A, Di Paola R, “Surface tension-driven flow in wickless heat pipes with self-rewetting fluids, ”Heat Fluid Flow, Vol.30, Issue 2, pp. 380–388, 2009.
[32]Savino R,Di Paola R, Cecere A, “Self-rewetting heat transfer and nano brines for space heat pipes, ” Journal of Acta Astronaut, Vol.67, Issues 9,pp.1030–1037, 2010.
[33]Di Paola R,Savino R, D. Mirabile Gattia R. Marazzi, M. Vittori Antisari , “Self-rewetting Carbon nanofluid as working fluid for space and terrestrial heat pipes, ” Journal of Nanoparticle , Vol.13, Issues 11,pp.6207–6216, 2011.
[34]R Savino, A Cecere, S.V. Vaerenbergh, Y Abe, “Some experimental progresses in the study of self-rewetting fluids for the SELENE experiment to be carried in the Thermal Platform 1 hardware, ” Journal of Acta Astronaut, Vol.89, Issues 9,pp.179-188, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top