(3.239.33.139) 您好!臺灣時間:2021/02/26 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳聖元
研究生(外文):Sheng-Yuan Chen
論文名稱:自動化大範圍之雙光子聚合微製造系統
論文名稱(外文):Automatic Large Area Micro Manufacturing System for Two-Photon Polymerization
指導教授:鍾添東鍾添東引用關係
指導教授(外文):Tien-Tung Chung
口試委員:單秋成林志郎Patrice L. BaldeckMarc Joyeux
口試委員(外文):Chow-Shing ShinChih-Lang LinPatrice L. BaldeckMarc Joyeux
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:81
中文關鍵詞:雙光子聚合雙光子吸收微加工自動對焦陣列加工繞射光學元件
外文關鍵詞:two-photon polymerizationtwo-photon absorptionmicro manufacturingautofocusarray fabricationdiffractive optical element
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出自動化大範圍之雙光子聚合微製造系統,此製造系統含有增進微加工品質與效率之功能。首先,安裝行程100微米之3D壓電平台於行程30mm之XY平台上,並開發軟體控制兩平台進行大範圍之微製造。由於自動對焦之精度對於大範圍加工甚為重要,於是藉由調整CMOS相機以增進自動對焦之性能。然後,藉由製造微彈簧陣列、微針頭陣列、菲涅耳透鏡陣列等展示了自動陣列加工之功能,並以軟體修正壓電平台在加速與減速時造成的加工缺陷。此外,為了加速生產,測試了可將雷射光束分散成3X3光束陣列之繞射光學元件,藉由此元件可同時加工出3X3陣列之結構。最後,建構了可加工出大範圍2.5D結構的掃描法,藉由驅動移動平台來回掃瞄並搭配壓電平台進行傾斜校正,成功加工出2.5D的結構,例如光學光柵、網格結構、傾斜式光柵等。

This thesis proposes an automatic large area micro manufacturing system for two-photon polymerization (TPP). This manufacturing system consists of several functions for improving the quality and efficiency of micro-fabrication. First, a 100 micro meters short range 3D piezo stage is fixed on top of a 30 mm long range XY stage, and a software is designed to control both of the two stages for large area micro manufacturing. For fabricating over large area, the precision of autofocus becomes more important. Therefore, optimizing the CMOS camera for enhancing performance of autofocus is carried out. Then, the automatic array fabrication is demonstrated by fabricating micro-spring array, micro-needle array, and Fresnel zone plate array. Some fabrication defects from acceleration and deceleration of piezo stage are corrected by software. Besides, to speed up the production, a diffractive optical element (DOE) is tested. This DOE can split the laser beam into 3x3 beam array to fabricate 3x3 array structures at one time. Finally, a scanning method for fabricating 2.5D structure over large area is implemented. By driving the translation stage to scan back and forth and doing tilt-correction through piezo stage, the 2.5D structures such as optical grating, grid, and blazed grating are successfully fabricated.

口試委員會審定書 I
致謝 II
中文摘要 III
Abstract IV
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES XII
NOMENCLATURES XIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Paper Review 4
1.3 Research Purpose 10
1.4 Thesis Outline 11
Chapter 2 Related Theories for TPP Fabrication 13
2.1 Fundamental Theory 13
2.2 The Process of TPP Fabrication 18
2.3 Critical Point Drying 20
Chapter 3 Experimental System and Material of TPP Micro Fabrication 23
3.1 Hardware Setup 23
3.2 Automatic TPP Fabrication Software 26
3.3 TPP Material 29
Chapter 4 Automatic Manufacturing over Large Area 32
4.1 Improvement of Autofocus for Large-Area Tilt Correction 32
4.2 Array Fabrication of Micro Structure 35
4.3 Fabricating Array by Diffractive Optical Element 39
Chapter 5 High Speed Fabrication of 2.5D Structure 43
5.1 Behavior of Piezo Stage 44
5.2 Long-Range Line Scan Method 52
5.3 2.5D Micro Structure 59
5.4 Binding Problem 63
Chapter 6 Conclusions and Suggestions 65
6.1 Conclusions 65
6.2 Suggestions 67
Reference 68
Appendix A User Manual of Automatic Large Area Micro Manufacturing Software for TPP 74
A.1 Software Installation 74
A.2 Project 1: Single Fabrication 76
A.3 Project 2: Array Fabrication 79
A.4 Project 3: 2.5D Scan Fabrication 80
Appendix B Scanning Path Data File and Manufacturing Parameters for Micro Fabrication 81

[1]V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterha&;#776;nsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten, “Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,” Journal of Laser Applications, vol. 24, no. 4, p. 042004, 2012.
[2]M. Emons, K. Obata, T. Binhammer, A. Ovsianikov, B. N. Chichkov, and U. Morgner, “Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses,” Opt. Mater. Express, vol. 2, no. 7, p. 942, Jul. 2012.
[3]S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” Journal of Microelectromechanical Systems, vol. 12, no. 5, pp. 533–539, Oct. 2003.
[4]S. Klein, A. Barsella, G. Taupier, V. Stortz, A. Fort, and K. D. Dorkenoo, “Optical components based on two-photon absorption process in functionalized polymers,” Applied Surface Science, vol. 252, no. 13, pp. 4919–4922, Apr. 2006.
[5]T. Stichel, “Two-photon Polymerization as Method for the Fabrication of Large Scale Biomedical Scaffold Applications,” Journal of Laser Micro/Nanoengineering, vol. 5, no. 3, pp. 209–212, Dec. 2010.
[6]I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Optics Letters, vol. 27, no. 15, p. 1348, Aug. 2002.
[7]M. Goppert-Mayer, “Uber Elementarakte mit zwei Quantensprungen,” Annalen der Physik, vol. 401, no. 3, pp. 273–294, 1931.
[8]W. Kaiser and C. Garrett, “Two-Photon Excitation in CaF_{2}: Eu^{2+},” Physical Review Letters, vol. 7, no. 6, pp. 229–231, Sep. 1961.
[9]K.-S. Lee, D.-Y. Yang, S. H. Park, and R. H. Kim, “Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications,” Polymers for Advanced Technologies, vol. 17, no. 2, pp. 72–82, Feb. 2006.
[10]A. Spangenberg, N. Hobeika, F. Stehlin, J. Pierre Malval, F. Wieder, P. Prabhakaran, P. Baldeck, and O. Sopper, “Recent Advances in Two-Photon Stereolithography,” Updates in Advanced Lithography, Jul. 2013.
[11]S. Maruo and S. Kawata, “Two-photon-absorbed near-infrared photopolymerization for three-dimensional microfabrication,” Journal of Microelectromechanical Systems, vol. 7, no. 4, pp. 411–415, 1998.
[12]S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Optics Letters, vol. 22, no. 2, p. 132, Jan. 1997.
[13]Brian H. Cumpston, Sundaravel P. Ananthavel, Stephen Barlow, Daniel L. Dyer, Jeffrey E. Ehrlich, Lael L. Erskine, Ahmed A. Heikal, Stephen M. Kuebler, I.-Y. Sandy Lee, Dianne McCord-Maughon, Jinqui Qin, Harald Rockel, Mariacristina Rumi, Xiang-Li Wu, Seth R. Marder, and Joseph W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature, no. 6722. pp. 51–54, 1999.
[14]Hong-Bo Sun and S. Kawata, “Two-photon laser precision microfabrication and its applications to micro-nano devices and systems,” Journal of Lightwave Technology, vol. 21, no. 3, pp. 624–633, Mar. 2003.
[15]S. H. Park, T. W. Lim, D.-Y. Yang, R. H. Kim, and K.-S. Lee, “Improvement of spatial resolution in nano-stereolithography using radical quencher,” Macromol. Res., vol. 14, no. 5, pp. 559–564, Oct. 2006.
[16]W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Optics Express, vol. 15, no. 6, p. 3426, 2007.
[17]Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization,” Nanotechnology, vol. 19, no. 5, p. 055303, Feb. 2008.
[18]S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO_2 drying enable high-precision microfabrication of three-dimensional structures,” Optics Express, vol. 17, no. 23, p. 20945, Nov. 2009.
[19]A. Ovsianikov, B. Chichkov, P. Mente, N. A. Monteiro-Riviere, A. Doraiswamy, and R. J. Narayan, “Two Photon Polymerization of Polymer?Ceramic Hybrid Materials for Transdermal Drug Delivery,” International Journal of Applied Ceramic Technology, vol. 4, no. 1, pp. 22–29, Jan. 2007.
[20]S. Steenhusen, T. Stichel, R. Houbertz, and G. Sextl, “Multi-photon polymerization of inorganic-organic hybrid polymers using visible or IR ultrafast laser pulses for optical or optoelectronic devices,” Advanced Fabrication Technologies for Micro/Nano Optics and Photonics III, Feb. 2010.
[21]F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, “Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization,” Optics Express, vol. 14, no. 2, p. 800, 2006.
[22]M. Malinauskas, V. Purlys, A. &;#381;ukauskas, G. Bickauskaite, T. Gertus, P. Danilevicius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukiene, L. Bukelskis, R. &;#352;irmenis, V. Bukelskiene, R. Gadonas, V. Sirvydis, and A. Piskarskas, “Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates,” Biophotonics: Photonic Solutions for Better Health Care II, Apr. 2010.
[23]Sang Hu Park, Tae Woo Lim, Dong Yol Yang, Shin Wook Yi, and Hong Jin Kong, "Direct Fabrication of Micropatterns and Three-Dimensional Structures Using Nanoreplication-Printing (nRP) Process.” Sensors and Materials, Vol. 17, No. 2 065-075, 2005.
[24]C.-Y. Liao, "Product Model Acquisition, Preparation, and Simulation for Two-photon Polymerization Micro-manufacturing." Joint Ph.D. dissertation, University of Joseph Fourier and National Taiwan University, France and Taiwan, 2008.
[25]M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” Journal of the Optical Society of America A, vol. 27, no. 2, p. 295, Feb. 2010.
[26]S. Wu, J. Serbin, and M. Gu, “Two-photon polymerisation for three-dimensional micro-fabrication,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 181, no. 1, pp. 1–11, Jul. 2006.
[27]T. Hasegawa and S. Maruo, “Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” 2007 International Symposium on Micro-NanoMechatronics and Human Science.
[28]Quorum Technologies n.d., accessed 7 April 2014, < http://www.quorumtech.com/home >.
[29]T.-T. Chung, Y.-T. Tu, Y.-H. Hsueh, S.-Y. Chen, and W.-J. Li, “Micro-lens Array Fabrication by Two Photon Polymerization Technology,” International Journal of Automation and Smart Technology, vol. 3, no. 2, pp. 131–135, Jun. 2013.
[30]Y.-H. Hsueh, “Micro Manufacturing System for Two-Photon Polymerization with Automatic Focus and Tilt Correction,” M.S. thesis, National Taiwan University, Taiwan, 2013.
[31]C.-L. Tseng, “Design and Fabrication of Micro Devices by Two-Photon Polymerization,” M.S. thesis, National Taiwan University, Taiwan, 2011.
[32]C.-P. Hung, “Quality Improvement for Micro Products Fabricated by Two-Photon Polymerization Technology,” M.S. thesis, National Taiwan University, Taiwan, 2012.
[33]C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chemical Physics Letters, vol. 362, no. 3–4, pp. 291–295, Aug. 2002.
[34]W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The art of Scientific Computing, 3rd ed. New York: Cambridge University Press, 2007, ch15.
[35]C.-L. Lin, Y.-H. Lee, C.-T. Lin, Y.-J. Liu, J.-L. Hwang, T.-T. Chung, and P. L. Baldeck, “Multiplying optical tweezers force using a micro-lever,” Optics Express, vol. 19, no. 21, p. 20604, Oct. 2011.
[36]C. Marzolin, S. P. Smith, M. Prentiss, and G. M. Whitesides, "Fabrication of glass microstructures by micro-molding of sol-gel precursors," Adv. Mater. 10 (8), 571 (1998).
[37]S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser microfabrication of periodic structures using a microlens array,” Applied Physics A, vol. 80, no. 4, pp. 683–685, Feb. 2005.
[38]S. A. Pruzinsky and P. V. Braun, “Fabrication and Characterization of Two-Photon Polymerized Features in Colloidal Crystals,” Adv. Funct. Mater., vol. 15, no. 12, pp. 1995–2004, Dec. 2005.
[39]C.-T. Lin, “Simulation and Improvements of Two-photon Polymerization Fabrication Process,” Ph.D. thesis, National Taiwan University, France and Taiwan, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔