跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宛柔
研究生(外文):Wan-Jou Lee
論文名稱:雙光子聚合微製造之材料與製程最佳化
論文名稱(外文):Optimization of material and fabrication process for micro fabrication by Two-Photon Polymerization
指導教授:鍾添東鍾添東引用關係
指導教授(外文):Tien-Tung Chung
口試委員:單秋成林志郎Patrice BaldeckMarc Joyeux
口試委員(外文):Chow-Shing ShinChih-Lang LinPatrice BaldeckMarc Joyeux
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:95
中文關鍵詞:雙光子聚合雙光子吸收微製造微透鏡微光柵
外文關鍵詞:two-photon polymerizationtwo-photon absorptionmicro fabricationmicro lensmicro grating.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究雙光子微製造之材料與製程最佳化,所建立之雙光子聚合製造系統使用低成本的130kHz高頻率Nd:YAG雷射,另需要使用兩種不同物鏡的光學顯微鏡,其中一個物鏡之放大倍率為100倍、數值孔徑為1.3,另一個物鏡之放大倍率為50倍、數值孔徑為0.8。雙光子聚合製造使用兩種不同之材料,分別是Photomer 3015以及ORMOCOMP。首先,在不同材料與物鏡組合下,以各種不同製造參數製造一系列直線,再藉由這些直線之高解析度電子顯微鏡影像,以量測所製造線之橫向及縱向解析度。從線製造結果擬合獲得的雙光子聚合製程特性,可和使用PSF Lab軟體得到的模擬結果進行比較。接著,基於線製造之實驗所得結果,已成功製造數個微型產品,不同材料及不同物鏡所製造出的微透鏡皆具有將光線聚焦以及物體成像的功能。最後成功製造出13x13之微透鏡陣列,其陣列尺寸為1.3mm x 1.3mm;此外微型光柵、微型台北101、微型馬等也已製造完成並擁有好品質。

This thesis studies the optimization of materials and fabrication process for micro fabrication by Two-Photon Polymerization (TPP). The established TPP fabrication system uses a low-cost 130kHz high repetition rate Nd:YAG laser. In addition, an optical microscope with two different objective lenses is required. One objective lens has magnification of 100 times (100x) with numerical aperture (NA) of 1.3, the other is 50x-NA0.8. Two different materials, Photomer 3015 and ORMOCOMP are used in TPP production. First, a series of lines are fabricated with various manufacturing parameters under different combination of material and objective lens. From measurement of high resolution scanning electronic microscope (SEM) images of these lines, the lateral and longitudinal resolutions of lines can be obtained. The characterization of TPP process obtained from fitting of line fabrication results can be compared with simulation result obtained from PSF Lab software. Then, based on the information provided from the experiment of line fabrication, several micro products are fabricated successfully. Micro lenses are fabricated with different combination of materials and objective lenses, and they are able to focus the light and image objects. Finally, a 13x13 micro lens array (MLA) with size 1.3mm x 1.3mm are fabricated. Furthermore, micro grating, micro Taipei 101, and micro horse are also fabricated with good quality.

口試委員會審定書 I
致謝 II
摘要 III
Abstract IV
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES XIII
NOMENCLATURES XIV
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 4
1.3 Research motivation 12
1.4 Thesis outline 12
Chapter 2 Principle and fabrication process of TPP 14
2.1 Fundamental principle of TPP process 14
2.2 The fabrication process of TPP 18
2.3 Supercritical point drying process 20
2.4 Scanning electronic microscope image 23
Chapter 3 Experimental setup and material employed of TPP micro fabrication 24
3.1 Experimental setup of TPP micro fabrication 24
3.2 NTUMFS CAM system for TPP micro fabrication 26
3.3 Material of TPP micro fabrication 28
Chapter 4 Optimization of TPP fabrication parameters 31
4.1 Simulation of optics 31
4.2 Characterization of TPP process 34
4.2.1 Line fabrication with 1.3 NA objective lens 35
4.2.2 Line fabrication with 0.8 NA objective lens 47
Chapter 5 Micro fabrication applications 56
5.1 Fabrication of micro lens 56
5.1.1 Fabrication strategy of micro lens 57
5.1.2 Micro lens characterization 62
5.1.3 Micro lens array fabrication 69
5.2 Fabrication of micro grating 72
5.3 Fabrication of micro Taipei 101 74
5.4 Fabrication of micro horse 78
Chapter 6 Conclusions and Suggestions 82
6.1 Conclusions 82
6.2 Suggestions 84
References 85
Appendix A Preparing process of TPP materials 92
Appendix B Scanning path data file and fabrication parameters for micro fabrication 94
作者簡歷 96


[1]E. Kapyla, S. Turunen, J. Pelto, J. Viitanen and M. Kellomaki, “Investigation of the optimal processing parameters for picosecond laser-induced microfabrication of a polymer–ceramic hybrid material,” Journal of Micromechanics and Microengineering, vol.21, 2011.
[2]M. Goppert-Mayer, “Uber Elementarakte mit zwei Quantensprungen,” Annalen der Physik, vol. 401, no. 3, pp. 273–294, 1931.
[3]D. S., L. De, A. J. G. Otuka, V. Tribuzi, and C. R., “Two-Photon Polymerization Fabrication of Doped Microstructures,” Polymerization, Sep. 2012.
[4]H.-B. Sun and S. Kawata, “Two-photon photopolymerization and 3D lithographic microfabrication,“ Adv. Polym. Sci., vol. 170, pp.169-273, 2004.
[5]C.-Y. Liao, “Product Model Acquisition, Preparation, and Simulation for Two-photon Polymerization Micro-manufacturing,” Joint Ph.D.dissertation, University of Joseph Fourier and National Taiwan University, France and Taiwan, 2008.
[6]S. R. Marder, J. -L. Bredas, and J. W. Perry, “Materials for multiphoton 3D microfabrication,“ MRS bulletin ,vol 32, pp. 561-565, 2007.
[7]D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Applied physics letters, vol. 90, 2007.
[8]W. Haske, V. W. Chen, J. M. Hales, W. Dong, S.Barlow, S. R. Marder, J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Optics express, vol. 15, pp. 3426-3436, 2007.
[9]H.-B. Sun, T. Tanaka, and S. Kawata, “Three-dimensional focal spots related to two-photon excitation,“Applied physics letters, vol. 80, no. 20, pp. 3673-3675, 2001.
[10]R.J. DeVoe, H. Kalweit, C. A. Leatherdale, and T.R. Williams, “Voxel shapes in two-photon microfabrication,” Proceedings of SPIE, Vol. 4797, 2003.
[11]Z. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure–Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,“ Macromolecules, vol. 46, pp. 352-361, 2013.
[12]M. Malinauskas, V. Purlys, M. Rutkauskas, R. Gadonas, “Two-photon polymerization for fabrication of three-dimensional micro-and nanostructures over a large area,” SPIE MOEMS-MEMS: Micro-and Nanofabrication. International Society for Optics and Photonics, 2009.
[13]T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” Journal of Applied Physics, vol. 95, no.11, pp. 6072-6076, 2004.
[14]Z. Li, M. Siklos, N. Pucher, K. Cicha, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, G. Gescheidt, J. Stampfl, R. Liska, “Synthesis and structure&;#8208;activity relationship of several aromatic ketone&;#8208;based two&;#8208;photon initiators,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 49, pp. 3688-3699, 2011.
[15]Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, Li. Niu, A. Li and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” Journal of Optics , vol.12, 2010.
[16]R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Optical Society of America, Vol. 14, pp.810-816, 2006.
[17]D. Wu, Q.-D. Chen, L.-G. Niu, J. Jiao, H. Xia, J.-F. Song, and H.-B. Sun, “100% Fill-Factor Aspheric Microlens Arrays (AMLA) With Sub-20-nm Precision,” IEEE Photon. Technol. Lett., vol. 21, no. 20, pp. 1535–1537.
[18]M. Malinauskas, H. Gilbergs, A. &;#381;ukauskas, V. Purlys, D. Paipulas and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” Journal of optics, vol. 12, 2010.
[19]J. Serbin, A. Ovsianikov, and B. Chichkov, “Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,” Optics Express, vol. 12, no.21, pp. 5221-5228, 2004.
[20]K. K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, “Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1 um,” Appl. Phys. Lett., Vol. 88, p. 221101, 2006.
[21]I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, B.N. Chichkov, “Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication,“ Applied Physics A, vol. 100, pp. 359-364, 2010.
[22]S. D. Gittard, A. Ovsianikov, B. N. Chichkov, A. Doraiswamy, and R. J. Narayan, “Two-photon polymerization of microneedles for transdermal drug delivery,” Expert opinion on drug delivery, vol. 7, pp.513-533, 2010.
[23]S. D. Gittard, P. R. Miller, R. D. Boehm, A. Ovsianikov, B. N. Chichkov, J. Heiser, J. Gordon, N. A. Monteiro-Riviere, and R. J. Narayan, ”Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles,” Faraday discussions. vol. 149, pp. 171-185, 2011.
[24]A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Lobler, K. Sternberg, K.-P. Schmitz, and A. Haverich, “Three-dimensional laser micro-and nano-structuring of acrylated poly (ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta biomaterialia, vol. 7, pp. 967-974, 2011.
[25]T. Stichel, B. Hecht, R. Houbertz and G. Sextl, “Two-photon Polymerization as Method for the Fabrication of Large Scale Biomedical Scaffold Applications,” Journal of Laser Micro/Nanoengineering, vol. 5, no.3, 2010.
[26]K. Obata, A. El-Tamer, L. Koch, U. Hinze and B. N. Chichkov, “High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP),” Light: Science &; Applications , vol.2, 2013.
[27]I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Optics letters, vol. 27, pp. 1348-1350, 2002.
[28]B. Kaehr, N. Ertas﹐ R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Analytical chemistry, vol. 78, pp. 3198-3202, 2006.
[29]M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Applied Physics Letters, vol. 97, 2010.
[30]M. Malinauskas, P. Danilevi&;#269;ius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Optics express, vol. 19, pp. 5602-5610, 2011.
[31]C.-L. Lin, Y.-H. Lee, C.-T. Lin, Y.-J. Liu, J.-L. Hwang, T.-T. Chung, and P. L. Baldeck, “Multiplying optical tweezers force using a micro-lever,” Optics Express, Vol. 19, pp. 20604-20609, Oct. 2011.
[32]S. H. Park, T. W. Lim, D. -Y. Yang, S. W. Yi, and H. J. Kong, “Direct Fabrication of Micropatterns and Three-Dimensional Structures Using Nanoreplication-Printing (nRP) Process,” Sens. Mater., Vol. 17, pp. 065-075, 2005.
[33]M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” Journal of the Optical Society of America A, vol. 27, no. 2, p. 295, Feb. 2010.
[34]H.-B. Sun, and S. Kawata, “Two-photo Laser Precision Microfabrication and Its Applications to Micro-nano Devices and Systems,” Journal of Lightwave Technology, Vol. 21, pp.624-633, 2003.
[35]T. Hasegawa, and S. Maruo, “Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” in Proc. of Int. Symp. on Micro-nanomechatronics and Human Science (MHS), pp.12-15, 1997.
[36]S. Maruo, T. Hasegawa, and N. Yoshimura, “Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures," Optics express, vol. 17, no.23, pp. 20945-20951, 2009.
[37]W. Leitner, “Green chemistry: Designed to dissolve,” Nature, vol. 405, no. 6783, pp. 129–130, May 2000.
[38]Y.-H Hsueh, “Micro Manufacturing System for Two-Photon Polymerization with Automatic Focus and Tilt Correction,” M.S. thesis, National Taiwan University, Taiwan, 2013.
[39]M. H. Bland and N. A. Peppas, “Photopolymerized multifunctional (meth) acrylates as model polymers for dental applications,” Biomaterials, vol. 17, no.11, pp. 1109-1114, 1996.
[40]O. STEPHAN (2013). ACRYLATES AND DERIVATIVES: POLYMERS FOR TWO-PHOTON MICROFABRICATION.
[41]T. Woggon, T. Kleiner, M. Punke and U. Lemmer, “Nanostructuring of organic-inorganic hybrid materials for distributed feedback laser resonators by two-photon polymerization,” Optics express, vol. 17, no.4, pp. 2500-2507, 2009.
[42]C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau, and P. L. Baldeck, “Efficient initiators for two-photon induced polymerization in the visible range,” Chem. Phys. Lett.,Vol. 362, pp. 291-265, 2002.
[43]Y. Liu, D. D. Nolte, and L. J. Pyrak-Nolte, “Large-format fabrication by two-photon polymerization in SU-8,” Applied Physics A, vol. 100, no. 1, pp. 181–191, Jul. 2010.
[44]K. Takada, H.-B. Sun, and S. Kawata, “The study on spatial resolution in two-photon induced polymerization,” Micromachining Technology for Micro-Optics and Nano-Optics IV, Jan. 2006.
[45]H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, “Scaling laws of voxels in two-photon photopolymerization nanofabrication,” Appl. Phys. Lett., vol. 83, no. 6, p. 1104, 2003.
[46]I. Fitilis, M. Fakis, I. Polyzos, V. Giannetas, and P. Persephonis, “Two-photon polymerization of a diacrylate using fluorene photoinitiators–sensitizers,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 215, no. 1, pp. 25–30, Sep. 2010.
[47]C.-T. Lin, “Simulation and Improvements of Two-photon Polymerization Fabrication Process,” Ph.D. thesis, National Taiwan University, France and Taiwan, 2012.
[48]T.-T. Chung, Y.-T. Tu, Y.-H. Hsueh, S.-Y. Chen, and W.-J. Li, “Micro-lens Array Fabrication by Two Photon Polymerization Technology,” International Journal of Automation and Smart Technology, vol. 3, no. 2, pp. 131–135, Jun. 2013.
[49]C.-P. Hung, “Quality Improvement for Micro ProductsFabricated by Two-Photon Polymerization Technology,” M.S. thesis, National Taiwan University, Taiwan, 2012.
[50]C. Misbah, P. Berger, and K. Kassner, “Stress-Induced Surface Modulation,” Atomistic Aspects of Epitaxial Growth, pp. 383–396, 2002.
[51]M. T. Gale, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng, vol. 33, no. 11, p. 3556, Nov. 1994.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊