跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王瑜瑄
研究生(外文):Yu-Hsuan Wang
論文名稱:用於微創手術具有微翼和孔洞結構之植入式探針
論文名稱(外文):An Implantable FPC-based neural probe with pore and micro-wing structure for minimally invasive surgery
指導教授:施文彬
口試委員:游佳欣林啟萬胡毓忠
口試日期:2014-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:58
中文關鍵詞:植入式電刺激系統探針微創手術微翼孔洞軟性電路板SU-8
外文關鍵詞:Implantable stimulation systemsprobesminimally invasive surgerymicro-wingsporesflexible printed circuit (FPC)SU-8
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據歷年來的統計,需要下背痛治療的人數不斷上升。雖然下背痛可以有效依靠藥物來減緩症狀,然而藥物治療會產生副作用。因此,研究學者希望找到其他的治療方式。植入式的電刺激系統可用於長期的電刺激治療,而無線式的脈衝射頻也已經廣泛的使用在背痛的治療中,並且持續的由研究學者們研究與改良。
本篇研究成功的設計且製造出一款用於微創手術具有微翼和孔洞結構之植入式探針。此探針設計中具有微翼與孔洞結構,可用來提升在體內中的固定能力。此外,除了一對導電對以刺激目標神經外,還有兩對偵測對,以用於感測細胞在孔洞內的生長。設計的探針包含兩部分: SU-8層與基底層,基底層是具有電路設計的軟性電路板。實驗結果顯示,SU-8層可提升約21.17%的平均楊氏係數與截面二次軸矩的乘積值。而微翼結構可以提升約38.58%的抗拉力。在阻抗測量上,探針在不同環境中的阻抗具有明顯差異,代表感測電極用於偵測細胞生長是可行的。
設計的探針成品也與上一代的電極 (FPC-based electrode with adhesive microtubes) 和不同外觀形狀的設計做抗拉強度的比較,從拉伸實驗中可以定義出一個幾何係數,此代表探針的幾何形狀也會對抗拉強度產生影響。


Literature statistics showed that the needs for low back pain treatment have been increasing. Low back pain can be effectively relieved by pharmacological treatment. However, this type of treatment may cause lots of side effects. Thus, researchers have been seeking other ways to relieve low back pain. Lots of implantable stimulation systems have been developed for long-term treatment. Pulse radiofrequency (PRF) stimulation has been widely used for back pain treatment and still being studied.

This thesis presents a bipolar porous probe for implantable nerve stimulation treatment utilizing minimally invasive surgery (MIS). The probe’s design features micro-wings and pores for cell growth that promote long-term fixation in the body. Two recording pairs detect whether cells grow into the pores, and one pair of stimulating pads stimulates the target nerve. The probe is composed of two layers: one SU-8 layer and one flexible printed circuit (FPC) layer. Results show that SU-8 films can increase the average product of the area moment of inertia and Young’s modulus by 21.17% from 5.81 x&;#12310;10&;#12311;^(-6) N&;#8729;m^2 to 7.04 x&;#12310;10&;#12311;^(-6) N&;#8729;m^2, and that micro-wings can increase the force of fixation by 38.58% from 0.114 N to 0.158 N. From the impedance test, the impedance of the recording pairs in different surroundings shows the apparent difference, indicating that two recording pairs are promising for detecting cells growth.

The designed probe is also compared with a prior work, FPC-based electrode with adhesive microtubes, and other geometry of probes. From the result, a geometric coefficient, m, is defined to show that geometry is also one of the key factors for fixation of probes.


誌謝 i
中文摘要 ii
ABSTRACT iii
SYMBOL TABLE v
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Backgrounds and motivation 1
1.2 Overview of the implantable stimulation system 2
1.3 Implantable stimulation electrodes/ probes and methods of anchoring 4
1.3.1 Literature review of implantable stimulation electrodes/ probes 4
1.3.2 Significance and methods of probes/ electrodes anchoring 7
1.3.3 Requirements of the designed probe 7
1.4 Thesis organization 8
Chapter 2 Device design 9
2.1 Selection of Materials 9
2.2 Probe design 9
2.2.1 Probe structure 9
2.2.2 FPC substrates 12
2.2.3 Mask design 15
Chapter 3 Fabrication 16
3.1 Fabrication processes 16
3.2 Post process- Air plasma treated probe surface 20
3.3 Comparing with literature-reviewed design 20
Chapter 4 Test results and discussion 22
4.1 Bending tests 22
4.1.1 Stiffness comparison of probes (with and without SU-8 films) 22
4.1.2 Critical load of the probe 24
4.2 Tensile tests (Fixation comparison of probes) 25
4.2.1 With and without micro-wings design 26
4.2.2 Comparing with FPC-based electrode with adhesive microtubes 29
4.2.3 Comparing probes with different geometries 31
4.2.4 Determining Young’s modulus of gelatin 32
Chapter 5 Measurement and Observation 34
5.1 Contact angles measurement 34
5.2 In vitro cell cultivation 34
5.2.1 Methods of cell cultivation 34
5.2.2 Results 36
5.3 Impedance measurement 37
5.3.1 The theoretical equivalent circuit 37
5.3.2 Impedance tests 41
Chapter 6 Conclusions and future work 47
6.1 Conclusions 47
6.2 Future work 51
REFERENCE 52
Appendix A Process capability of FPC fabrication 57
Appendix B Materials 58



[1]A. M. Elliott, B. H. Smith, P. C. Hanaford, W. C. Smith, and W. A. Chambers, “The course of chronic pain in the community: results of a 4-year follow-up study,” Pain, vol. 99, pp. 299-307, 2002.
[2]C. G. Helmick, D. T. Felson, R. C. Lawrence, S. Gabriel, R. Hirsch, C. K. Kwoh, M. H. Liang, H. M. Kremers, M. D. Mayes, P. A. Merkel, S. R. Pillemer, J. D. Reveille, and J. H. Stone, “Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part I,” Arthritis Rheum., vol. 58, pp. 15-25, 2008.
[3]P. Cote, J. D. Cassidy, and L. Carroll, “The Saskatchewan health and back pain survey: the prevalence of neck pain and related disability in Saskatchewan adults,” Spine, vol. 23, pp. 1689-1698, 1998.
[4]H. B. Bressler, W. J. Keyes, P. A. Rochon, and E. Badley, “The prevalence of low back pain in the elderly: a systematic review of the literature,” Spine, vol. 24, pp. 1813-1819, 1999.
[5]F. Cecchi, P. Debolini, R. M. Lova, C. Macchi, S. Bandinelli, B. Bartali, F. Lauretani, E. Benvenuti, G. Hicks, and L. Ferrucci, “Epidemiology of back pain in a representative cohort of Italian persons 65 years of age and older: the inCHIANTI study,” Spine, vol. 31, pp. 1149-1155, 2006.
[6]M. Mortimer, G. Pernold, and C. Wiktorin, “Low back pain in a general population. Natural course and influence of physical exercise – a 5-year follow-up of the musculoskeletal intervention center-Norrtalje study,” Spine, vol. 31, pp. 3045-3051, 2006.
[7]H. R. Guo, S. Tanaka, W. E. Halperin, and L. L. Cameron, “Back pain prevalence in US industry and estimates of lost workdays,” Am. J. Public Health, vol. 89, pp. 1029-1035, 1999.
[8]N. Attal, G. Cruccu, R. Baron, M. Haanpaa, P. Hansson, T. S. Jensen, and T. Nurmikko, “EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision,” Eur. J. Neurol., vol. 17, pp. 1113-1123, 2010.
[9]N. B. Finnerup, S. H. Sindrup, and T. S. Jensen, “The evidence for pharmacological treatment of neuropathic pain,” Pain, vol. 150, pp. 573-581, 2010.
[10]E. J. Tehovnik “Electrical stimulation of neural tissue to evoke behavioral responses,” J. Neurosci. Methods, vol. 65, pp. 1-17, 1996.
[11]R. Fuentes, P. Petersson, W. B. Siesser, M. G. Caron, and M. A. L. Nicolelis, “Spinal cord stimulation restores locomotion in animal models of Parkinson’s disease,” Science, vol. 323, pp. 1578-1582, 2009.
[12]J. W. M. Geurts, L. Lou, C. A. Gauci, P. Newnham, and R. M. A. W. van Kijk, “Radiofrequency treatments in low back pain,” Pain Pract., vol. 2, pp. 226-234, 2002.
[13]D. Byrd and S. Mackey, “Pulsed radiofrequency for chronic pain,” Curr. Pain Headache Rep., vol. 12, pp. 37-41, 2008.
[14]F. Tendick, S. S. Sastry, R, S. Fearing, and M. Cohn, “Applications of micromechtronics in minimally invasive surgery,” IEEE/ASME Trans. Mechatron., vol. 3, No. 1, 1998.
[15]K. Van Boxem, M. Van Eerd, T. Brinkhuizen, J. Tatijn, M. Van Kleef, and J. Van Zundert, “Radiofrequency and pulsed radiofrequency treatment of chronic pain syndromes: the available evidence,” Pain Pract., vol. 8, pp. 385-393, 2008.
[16]C. T. Wu, “Development of implantable bipolar neural stimulation electrode for low back pain treatment,” Master Thesis, National Taiwan University, 2012.
[17]M. M. Sluijter and G. Racz, “Technical aspects of radiofrequency,” Pain Pract., vol. 2, pp. 195-200, 2002.
[18]D. Shatin, K. Mullett, and G. Hults, “Totally implantable spinal-cord stimulation for chronic pain – design and efficacy,” PACE, vol. 9, pp. 577-583, 1986.
[19]C. H. Chang, “Feasibility study of implantable pulsed-radiofrequency stimulator with verification on sciatica rat model,” Master Thesis, National Taiwan University, 2009.
[20]M. HajjHassan, V. Chodavarapu, and S. Musallam, “NeuroMEMS: neural probe microtechnologies,” Sensors, vol. 8, pp. 6704-6726, 2008.
[21]F. Wu, M. Im, and E. Yoon, “A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility,” TRANSDUCERS Conf., Beijing, CHINA, 5-9 June 2011, pp. 966-969.
[22]F. Wu, L. Tien, F. Chen, D. Kaplan, J. Berke, and E. Yoon, “A multi-shank silk-backed parylene neural probe for reliable chronic recording,” TRANSDUCERS &; EUROSENSORS XXVII Conf., Barcelona, SPAIN, 16-20 June 2013, pp. 888-891, 2013.
[23]R. B. North, V. R. Recinos, F. J. Attenello, J. Shipley, and D. M. Long, “Prevention of percutaneous spinal cord stimulation electrode migration: a 15-year experience,” Neuromodulation, 2014.
[24]R. K. Shepherd, S. Hatsushika, and G. M. Clark, “Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation,” Hear. Res., vol. 66, pp. 108-120, 1993.
[25]X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst., vol. 10, pp. 229-258, 2005.
[26]L. A. Geddes and R. Roeder, “Criteria for the selection of materials for implanted electrodes,” Annu.Rev. of Biomed. Eng., vol. 31, pp. 879-890, 2003.
[27]S. H. Cho, H. M. Lu, L. Cauller, M. I. Romero- Ortega, J. B. Lee, and G. A. Hughes, “Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers,” IEEE Sens. J., vol. 8, pp. 1830-1836, 2008.
[28]D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, pp. 2529-2543, 2000.
[29]N. A. Campbell, B. Williamson, and R. J. Heyden, Biology: exploring life, Pearson Prentice Hall, 2006.
[30]T. S. Karande, J. L. Ong, and C. M. Agrawal, “Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing,” Ann. Biomed. Eng., vol. 32, No. 12, 2004.
[31]M. Lee, B. M. Wu, and J. C. Y. Dunn, “Effect of scaffold architecture and pore size on smooth muscle cell growth,” J. Biomed. Mater. Res. Part A, vol. 87A, pp. 1010-1016, 2008.
[32]F. Walther, P. Davydovskaya, S. Z&;uuml;rcher, M. Kaiser, H. Herberg, A. M. Gigler and R. W. Stark, “Stability of the hydrophilic behavior of oxygen plasma activated SU-8,” J. Micromech. Microeng., vol. 17, pp. 524-531, 2007.
[33]M. Hennemeyer, F. Walther, S. Kerstan, K. Sch&;uuml;rzinger, A. M. Gigler, and R. W. Starka, “Cell proliferation assays on plasma activated SU-8,” Microelectron. Eng., vol. 85, pp.1298-1301, 2008.
[34]J. Domke and M. Radmacher, “Measuring the elastic properties of thin polymer films with the atomic force microscope,” Langmuir, pp. 3320-3325, 1998.
[35]J. Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2000, pp.18-22.
[36]X. Luo and J. J. Davis, “Electrical biosensors and the label free detection of protein disease biomarkers,” Chem. Soc. Rev., pp.5944-5962, 2013.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top