(3.232.129.123) 您好!臺灣時間:2021/03/06 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭延昇
研究生(外文):Yan-Sheng Kuo
論文名稱:常壓PECVD系統內氣流混合以及電漿反應之研究與設計
論文名稱(外文):Mixing of gas and plasma reaction in a PECVD system
指導教授:潘國隆
指導教授(外文):Kuo-Long Pan
口試委員:徐振哲沈弘俊
口試委員(外文):Cheng-Che HsuHorn-Jiunn Sheen
口試日期:2014-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:83
中文關鍵詞:電漿輔助化學氣相沈積混合多孔數值模擬大氣電漿驟冷
外文關鍵詞:Plasma enhanced chemical vapor depositionMixingPorousNumerical simulationAtmospheric pressure plasmaquench
相關次數:
  • 被引用被引用:3
  • 點閱點閱:292
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討PECVD系統腔體構造對於內部氣體流動以及電漿噴流下游流動的影響,運用商用套裝軟體(Fluent以及COMSOL)進行PECVD系統之數值模擬,其中使用k-ε紊流模型、熱傳模型以及化學模型三種模型並耦合進行計算。
由於電漿內部有許多種物質且相互產生不同的化學反應,無法直觀地建立模型進行數值模擬,因此先使用紊流模型耦合熱傳模型,模擬PECVD系統反應室內部熱流場。本研究中所使用的腔體經過改善後能減弱氣流的渦漩流動,並使得出口端氣流皆鉛直向下流動。此外,為建立可模擬電漿反應的模型,並與既有實驗結果比對,以證明化學模型確實能模擬電漿反應,故建立常壓噴流式電漿模型進行模擬。由模擬結果可知,噴流高度在某一高度以下,管內電漿放光強度會突增,此結果與實驗相符。噴流高度較高時有較大的回流現象,此回流可促使氧氣進入管內與激發態氮氣混合,進行驟冷反應影響電漿噴流外觀,此結果說明放光強度變化的原因。最後耦合化學模型模擬PECVD系統之電漿,進行腔體下游區氣流變化的研究。由模擬結果比較氧氣進入電漿下游區域的含量,經過改善的腔體模型下游區域氧氣含量相對較低。
由模擬結果可知,經改善過的腔體能使氣流均勻流出腔體,使鍍膜材料被均勻地輸送,且因氧氣含量較低使氮氣激發態分子被驟冷的量較少,應能更有效地氣化前驅物。

In this study, numerical simulation of the nitrogen plasma jet at atmospheric pressure is performed. In terms of commercial software, three types of models, namely k-ε turbulent flow model, heat transfer in fluids model and chemical reaction model are adopted.
Without complication of plasma reactions in the first place, we couple the k-ε turbulent flow model and heat transfer in fluids model to simulate the flow of PECVD chamber. Simulation results show that the modified design of chamber weakens the vortex and makes the mixed material delivered straight and uniformly, hence improve the quality of coating. Furthermore, in order to build a reliable chemical model for plasma simulation, we implement an atmospheric pressure plasma jet model. We compare the simulation results with the experiment results to validate the chemical model. Simulation results show that visible jet length and width will grow in a sudden when the height of plasma jet is lower than a certain height, which conforms to the observation of experiment results. This is due to the streamlines show that there is a backflow carrying the oxygen into the tube, and the excited state nitrogen densities decrease drastically due to the interaction of oxygen and the jet, which leading to quench. Based on the chemical model, we analyze different geometry design in the PECVD downstream. Simulation results show the profiles of oxygen density in the downstream of modified design of chamber are fewer, which means that excited state nitrogen has been quenched less, hence the light emission intensities are greater. With the effects of a porous plate, the flow appears much more uniform, with stronger reactions of plasma.

口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
符號表 xii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 電漿應用簡介 2
1.2.2 常見的常壓電漿製程 2
1.2.3 電漿流場模擬 3
1.2.4 氧氣添加對電漿之影響 7
1.2.5 常壓電漿化學模擬 10
1.2.6 電漿輔助化學氣相沉積相關應用介紹 12
1.3 研究動機 14
第二章 研究方法 15
2.1 數值分析軟體 15
2.1.1 前言 15
2.1.2 ANSYS Fluent介紹以及處理程序 15
2.1.3 COMSOL Multiphysics簡介以及處理程序 16
2.1.4 ANSYS Fluent與COMSOL Multiphysics比較 18
2.2 模擬流場模型 19
2.2.1 紊流模型 19
2.2.2 化學模型 24
2.2.3 混合氣體物理性質 27
第三章 流場幾何與設定 29
3.1 Fluent與COMSOL模擬熱流場 29
3.1.1 模擬流場基本假設 29
3.1.2 流場模型簡介 29
3.1.3 邊界與初始條件 31
3.1.4 軟體設定細節 32
3.2 PECVD腔體內部流場模型 36
3.2.1 模擬流場基本假設 36
3.2.2 流場模型簡介 36
3.2.3 邊界與初始條件 39
3.2.4 軟體設定細節 40
3.3 常壓氮氣噴流式電漿模型 41
3.3.1 模擬流場基本假設 41
3.3.2 流場模型簡介 42
3.3.3 邊界與初始條件 43
3.3.4 軟體設定細節 44
3.3.5 實驗設備與架構 47
3.4 PECVD系統的電漿噴流下游模型 49
3.4.1 模擬流場基本假設 49
3.4.2 流場模型簡介 50
3.4.3 邊界與初始條件 53
3.4.4 軟體設定細節 54
第四章 結果與討論 55
4.1 Fluent與COMSOL模擬熱流場的結果比較 55
4.2 PECVD腔體內部流場變化之研究 61
4.3 常壓氮氣噴流式電漿的放光現象分析 66
4.3.1 電漿噴流下游區域放光強度變化 66
4.3.2 電漿噴流下游區域流線變化 70
4.4 PECVD系統的電漿噴流下游氣流變化之研究 73
4.4.1 電漿噴流下游區域流線變化 73
4.4.2 電漿噴流下游區域之放光強度以及化學物種研究 75
第五章 結論與未來展望 78
5.1 結論 78
5.2 未來展望 79
第六章 參考資料 80

[1]M. Harting, S. Woodford. (2003), "Thin solid film", 430,153-156.
[2]K. Schuegraf. (1988), "Thin film deposition process and techniques", Noyes Publications.
[3]高正雄譯 (1984),超LSI 時代:電漿化學,工業調查會電子材料編集部.
[4]J. Heberlein and A. B. Murphy. (2008), "Thermal plasma waste treatment", J. Phys. D-Appl. Phys., 41 (5).
[5]A. Mountouris, E. Voutsas and D. Tassios. (2008), "Plasma gasification of sewage sludge: process development and energy optimization", Energy Conv. Manag., 49 (8), 2264-2271.
[6]M. H. Chiang, K. C. Liao, I. M. Lin, C. C. Lu, H. Y. Huang, C. L. Kuo and J. S. Wu. (2010), "Modification of hydrophilic property of polypropylene films by a Parallel-plate nitrogen-based dielectric barrier discharge jet", IEEE Trans. Plasma Sci., 38 (6), 1489-1498.
[7]R. Foest, E. Kindel, A. Ohl, M. Stieber and K. D. Weltmann. (2005), "Non-thermal atmospheric pressure discharge for surface modification", Plasma Phys. Control. Fusion, 47, B525-B536.
[8]E. Stoffels, Y. Sakiyama and D. B. Graves. (2008), "Cold atmospheric plasma: charged species and their interactions with cells and tissues", IEEE Trans. Plasma Sci., 36 (4), 1441-1457.
[9]D. C. Wang, D. Zhao, K. C. Feng, X. H. Zhang, D. P. Liu and S. Z. Yang. (2011), "The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications", Appl. Phys. Lett., 98 (16).
[10]M. J. Traylor, M. J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D. S. Clark and D. B. Graves. (2011), "Long-term antibacterial efficacy of air plasma-activated water", J. Phys. D-Appl. Phys., 44 (47).
[11]S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn and R. F. Hicks. (1998), "Deposition of silicon dioxide films with an atmospheric-pressure plasma jet", Plasma Sources Sci. Technol., 7 (3), 286-288.
[12]S. E. Alexandrov, M. L. Hitchman and S. H. Shamlian. (1995), "Remote plasma-enhanced chemical-vapor-deposition of silicon-nitride films – the effect of diluting nitrogen with helium", J. Mater. Chem., 5 (3), 457-460.
[13]C. J. Mogab, A. C. Adams and D. L. Flamm. (1978), "Plasma etching of Si and SiO2 - effect of oxygen additions to CF4 plasma", J. Appl. Phys., 49 (7), 3796-3803.
[14]J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks and G. S. Selwyn. (1998), "Etching materials with an atmospheric-pressure plasma jet", Plasma Sources Sci. Technol., 7 (3), 282-285.
[15]J. Y. Jeong, S. E. Babayan, A. Schutze, V. J. Tu, J. Park, I. Henins, G. S. Selwyn and R. F. Hicks. (1999), "Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet", J. Vac. Sci. Technol. A, 17 (5), 2581-2585.
[16]A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks. (1998), "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources", IEEE Trans. Plasma Sci., 26 (6), 1685-1694.
[17]J. R. Roth, S. Nourgostar and T. A. Bonds. (2007), "The one atmosphere uniform glow discharge plasma (OAUGDP) - A platform technology for the 21st century", IEEE Trans. Plasma Sci., 35 (2), 233-250.
[18]J. T. Herron and D. S. Green. (2001), "Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions", Plasma Chem. Plasma Process., 21 (3), 459-481.
[19]S. E. Alexandrov and M. L. Hitchman. (2005), "Chemical vapor deposition enhanced by atmospheric pressure non-thermal non-equilibrium plasmas", Chem. Vapor Depos., 11 (11-12), 457-468.
[20]B. Eliasson and U. Kogelschatz. (1991), "Nonequilibrium volume plasma chemical-processing", IEEE Trans. Plasma Sci., 19 (6), 1063-1077.
[21]T. Callebaut, I. Kochetov, Y. Akishev, A. Napartovich and C. Leys. (2004), "Numerical simulation and experimental study of the corona and glow regime of a negative pin-to-plate discharge in flowing ambient air", Plasma Sources Sci. Technol., 13 (2), 245-250.
[22]P. Fauchais, J. F. Coudert and M. Vardelle. (1997), "Transient phenomena in plasma torches and in plasma sprayed coating generation", Journal De Physique Iv, 7 (C4), 187-198.
[23]A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev and O. Mutaf-Yardimci. (1999), "Gliding arc gas discharge", Prog. Energy Combust. Sci., 25 (2), 211-231.
[24]S. C. Cho, Y. C. Hong and H. S. Uhm. (2006), "TeO2 nanoparticles synthesized by evaporation of tellurium in atmospheric microwave-plasma torch-flame", Chem. Phys. Lett., 429 (1-3), 214-218.
[25]J. M. Bauchire, J. J. Gonzalez and A. Gleizes. (1997), "Modeling of a DC plasma torch in laminar and turbulent flow", Plasma Chem. Plasma Process., 17 (4), 409-432.
[26]Ana Neilde R. da Silva, Nilton I. Morimoto. (2002), "Gas flow simulation in a PECVD reactor", Nanotech 2002 (1), 434-437.
[27]Jheng-Han Tsai, Chun-Ming Hsu and Cheng-Che Hsu. (2013), "Numerical simulation of downstream kinetics of an atmospheric pressure nitrogen plasma jet using laminar, modified laminar, and turbulent models", Plasma Chem. Plasma Process., 33 (6), 1121-1135.
[28]C. C. Hsu and Y. J. Yang. (2010), "The increase of the jet size of an atmospheric-pressure plasma jet by ambient air control", IEEE Trans. Plasma Sci., 38 (3), 496-499.
[29]Y. W. Hsu, Y. J. Yang, C. Y. Wu and C. C. Hsu. (2010), "Downstream characterization of an atmospheric pressure pulsed arc jet", Plasma Chem. Plasma Process., 30 (3), 363-372.
[30]S. Y. Moon and W. Choe. (2006), "Parametric study of atmospheric pressure microwave-induced Ar/O2 plasmas and the ambient air effect on the plasma", Phys. Plasmas, 13 (10), 6.
[31]I. H. Tsai and C. C. Hsu. (2010), "Numerical simulation of downstream kinetics of an atmospheric-pressure nitrogen plasma jet", IEEE Trans. Plasma Sci., 38 (12), 3387-3392.
[32]Y. H. Choi, J. H. Kim and Y. S. Hwang. (2006), "One-dimensional discharge simulation of nitrogen DBD atmospheric pressure plasma", Thin Solid Films, 506, 389-395.
[33]M. Moravej, X. Yang, M. Barankin, J. Penelon, S. E. Babayan and R. F. Hicks. (2006), "Properties of an atmospheric pressure radio-frequency argon and nitrogen plasma", Plasma Sources Sci. Technol., 15 (2), 204-210.
[34]蔡政翰(2013), "氮氣常壓噴射式電漿模擬", 國立台灣大學化學工程研究所碩士論文.
[35]Michael Quirk, Julian Serda. (2001), "Semiconductor manufacturing technology", Prentice Hall.
[36]M.D. Barankin, E. Gonzalez II, A.M. Ladwig, R.F. Hicks. (2007), "Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature", Solar Energy Materials &; Solar Cells., 91, 924-930.
[37]Y. Nose, T. Nakamura, T. Yoshimura, A. Ashida, T. Uehara, N. Fujimura. (2013),"Orientation Control of ZnO Films Deposited Using Nonequilibrium Atmospheric Pressure N2/O2 Plasma", Japanese Journal of Applied Physics., 52 (1).
[38]韓占忠,王敬,藍小平(2004), "FLUENT流體工程仿真計算實例與應用", 北京理工大學出版社.
[39]劉育成(2006), "矩形LCD製程CVD之熱質傳模擬研究", 國立中山大學機械與機電工程研究所碩士論文.
[40]R. Eymard, T. Gallouet and R Herbin. (2003), "Finite Volume Methods", Handbook of Numerical Analysis., (7), 713-1020.
[41]K. H. Huebner, E. A. Thornton. (1982), "The finite element method for engineers", John Wiley &; Sons.
[42]D. C. Wilcox. (1988), "Reassessment of the scale-determining equation for advanced turbulence models", AIAA J., 26 (11), 1299-1310.
[43]C. C. Hsu, M. A. Nierode, J. W. Coburn and D. B. Graves. (2006), "Comparison of model and experiment for Ar, Ar/O2 and Ar/O2/Cl2 inductively coupled plasmas", J. Phys. D-Appl. Phys., 39 (15), 3272-3284.
[44]D. C. Wilcox. (1993), "Turbulence Modeling for CFD", DCW Industries, Inc.
[45]M. Capitelli, C. M. Ferreira, B. F. Gordiets and A. I. Osipov. (2000), "Plasma Kinetics in Atmospheric Gases", Springer , pp. 159, 168, 169, 170.
[46]A. I. Kossyi, A. Y. Kostinsky, A. A. Matveyev and V. P. Silakov. (1992), "Kinetic scheme of the non-equilibrium discharge in nitrogen-oxygen mixtures", Plasma Sources Sci. Technol., 1, 207-220.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔