(3.237.97.64) 您好!臺灣時間:2021/03/09 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉嚴方
研究生(外文):Yan-Fang Liu
論文名稱:電廠餘熱移除管線系統之數值分析與實驗驗證
論文名稱(外文):Numerical Analysis and Experimental Verification of Residual Heat Removal Piping System in Power Plants
指導教授:吳文方
口試委員:黃尹男游章雄
口試日期:2014-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:92
中文關鍵詞:電廠餘熱移除管線系統耐震強度有限元素法法蘭接頭
外文關鍵詞:Power PlantResidual Heat Removal (RHR) Piping SystemEarthquake Resistant CapacityFinite Element AnalysisFlange Joint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
餘熱移除(Residual Heat Removal, RHR)系統為電廠內重要管線系統之一,該系統除熱交換器與閥件外,主要係由管線(Pipes)所組成。當電廠遇到緊急狀況時,提供爐心緊急冷卻水,確保爐心等機組不受高溫損毀。當餘熱移除管線系統受到地震等極端負載時,必須確保其具有足夠強度以維持其正常運作,這是不可忽視的重要議題。本研究旨在降低電廠事故發生的風險,瞭解餘熱移除管線系統受力行為及其所能承受的最大負載。本文主要分成二部份,第一部份為進行元件和系統試驗,瞭解元件與管線系統之受力行為與失效模式,並藉由美國機械工程師學會(ASME)的設計規範確認管線遭受強震仍符合規範要求;第二部份,則以有限元素法進行力學分析,建構適當的法蘭接頭模型與管線系統模型,更進一步提出法蘭接頭之簡化模型。本研究經比較數值模型與試驗結果,確認所建構之模型有一定的精確性,其中採用法蘭接頭簡化模型可減少原本模型70%以上的運算時間,並可據以快速評估電廠餘熱移除管線系統在受到包括強震在內不同負載下的安全性與可靠度。

The Residual Heat Removal (RHR) piping system is one of the most important systems in a nuclear power plant. It is used to provide emergency cooling water to protect the reactor core from high temperature damage during severe accidents. Its strength has therefore to be guaranteed. In order to reduce the accidental risk of power plants, especially owing to strong earthquakes, it is essential to investigate the mechanics behavior of the RHR piping system. This study is divided into two parts. In the first part, both the component test and system test are carried out to investigate the failure modes and mechanics behavior of the RHR piping system. In addition, to confirm the piping system meets the requirements of ASME design code when it is subjected to large earthquakes. In the second part, finite element method is employed for numerical analysis. The numerical models for both the flange joints and the piping system were established and verified according to the experimental results. Furthermore, a simplified model of the flange joints is proposed in this study. By comparing numerical results with the experimental results, it is concluded that all models proposed in this study predict the experimental results reasonably well. In particular, comparing to the original model of the flange joint, the simplified model effectively reduces 70% of the calculation time.

口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xi`
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究架構 3
第二章 基礎理論 5
2.1 破壞理論 5
2.2 管線系統設計分析 5
2.2.1 服務等級 6
2.2.2 使用限制 6
2.3 管線主要應力限制 9
2.4 螺栓預力 10
2.5 法蘭密封設計 12
第三章 管線元件試驗 15
3.1 試驗設計 15
3.2 試驗儀器擺置說明 21
3.3 試驗結果與討論 26
第四章 管線系統試驗 30
4.1 試驗設計 30
4.2 試驗儀器擺置說明 36
4.3 試驗結果與討論 42
第五章 管線元件試驗模型 45
5.1 有限元素軟體 ABAQUS介紹 45
5.1.1 ABAQUS/CAE 45
5.1.2 ABAQUS/Standard 45
5.2 法蘭接頭完整模型 46
5.2.1 尺寸與材料 46
5.2.2 邊界條件 46
5.2.3 接觸條件 46
5.2.4 負載條件 47
5.2.5 使用元素 47
5.2.6 網格劃分 47
5.3 法蘭接頭勁度 49
5.4 法蘭接頭簡化模型 53
5.5 模型與試驗結果驗證比較 54
第六章 管線系統試驗模型 63
6.1 管線系統模型建置 63
6.1.1 尺寸與材料 63
6.1.2 邊界條件 63
6.1.3 接觸條件 63
6.1.4 負載條件 64
6.1.5 使用元素 64
6.1.6 網格劃分 64
6.2 模型與試驗結果驗證比較 66
第七章 結論與未來展望 89
7.1 結論 89
7.2 未來展望 90
參考文獻 91



1. B. S. Ju and W. Y. Jung, “Evaluation of Performance Requirements for Seismic Design of Piping System,” International Journal of Civil, Architectural, Structural, Urban Science and Engineering, Vol. 74, No. 2, pp. 9 - 12, 2013.
2. Z. Y. Lai, Y. F. Liu, C. C. Yu, J. F. Chai, F. R. Lin, Y. N. Huang, and M. Y. Shen, “Cyclic Loading Test and Numerical Analysis of Flange Joint and Reducer of RHR Piping Systems,” Proceedings of Pressure Vessels &; Piping Division Conference, California, USA, 2014.
3. S. Vishnuvardhan, P. Gandhi, G. Raghava, M. Saravanan, DM. Pukazhendhi, S. Goyal, S. Satpute, S.K. Gupta, V. Bhasin, and K.K. Vaze, “Quasi-Cyclic Fracture Studies on Narrow Gap Welded Stainless Steel Straight Pipes,” Proceedings of the 21st International Conference on Structural Mechanics in Reactor Technology (SMiRT 21), New Delhi, India, 2011.
4. S. Vishnuvardhan, P. Gandhi, M. Saravanan, DM. Pukazhendhi, G. Raghava, S. Goyal, S.K. Gupta, and V. Bhasin, “Quasi-Cyclic Fracture Studies on TP 304LN Stainless Steel Straight Pipes,” Proceedings of the 5th International Conference on Theoretical, Applied, Computational and Experimental Mechanics (ICTACEM 2010), Kharagpur, India, 2010.
5. S. Vishnuvardhan, P. Gandhi, M. Saravanan, DM. Pukazhendhi, S. Goyal, S.K. Gupta, V. Bhasin, and K.K. Vaze, “Ratcheting Failure of Straight Pipes and Elbows with Internal Pressure Subjected to Cyclic Loading,” Proceedings of the 21st International Conference on Structural Mechanics in Reactor Technology (SMiRT 21), New Delhi, India, 2011.
6. Suneel K. Gupta, V. Bhasin, K. K. Vaze, A. K. Ghosh, and H. S. Kushwaha, “Effects of Simulated Seismic Loading on LBB Assessment of High Energy Piping,” Journal of Pressure Vessel Technology, Vol. 129, No. 1, pp. 28, 2007.
7. Analysis of JNES Seismic Tests on Degraded Piping, NUREG/CR-7015, United States Nuclear Regulatory Commission, 2010
8. O. S. Bursi, M. S. Reza, and A. Kumar, “Seismic Performance of Bolted Flange Joints in Piping Systems for Oil and Gas Industries,” Proceedings of World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
9. Y. Q. Wang, L. Zong, and Y. J. Shi, “Bending Behavior and Design Model of Bolted Flange-Plate Connection,” Journal of Constructional Steel Research, Vol. 84, No. 1, pp. 1-16, 2013.
10. A.H. Bouzid and H. Galai, “A New Approach to Model Bolted Flange Joints with Full Face Gaskets,” Journal of Pressure Vessel Technology, Vol. 133, No. 2, pp. 1-7, 2011.
11. A.H. Bouzid, “On the Effect of External Bending Loads in Bolted Flange Joints,” Journal of Pressure Vessel Technology, Vol. 131, No. 2, pp. 1-8, 2009.
12. A.H. Bouzid and A. Nechache, “The Modelling of Bolted Flange Joints Used with Disc Springs and Tube Spacers to Reduce Relaxation,” International Journal of Pressure Vessels and Piping, Vol. 87, No. 12, pp. 730-736, 2010.
13. N.G. Pai and D.P. Hess, “Three-Dimensional Finite Element Analysis of Threaded Fastener Loosening due to Dynamic Shear Load,” Engineering Failure Analysis, Vol. 9, No. 4, pp. 383-402, 2002.
14. M. Murali Krishna, M. S. Shunmugam, and N. Siva Prasad, “A Study on the Sealing Performance of Bolted Flange Joints with Gaskets using Finite Element Analysis,” International Journal of Pressure Vessels and Piping, Vol. 84, No. 6, pp. 349-357, 2007.
15. G. Mathan and N. Siva Prasad, “Studies on Gasketed Flange Joints under Bending with Anisotropic Hill Plasticity Model for Gasket,” International Journal of Pressure Vessels and Piping, Vol. 88, No. 11-12, pp. 495-500, 2011.
16. M. Abid, “Determination of Safe Operating Conditions for Gasketed Flange Joint under Combined Internal Pressure and Temperature: A finite Flement Approach,” International Journal of Pressure Vessels and Piping, Vol. 83, No. 6, pp. 433-441, 2006.
17. M. Abid and D. H. Nash, “Comparative Study of The Behaviour of Conventional Gasketed and Compact Non-Gasketed Flanged Pipe Joints under Bolt Up and Operating Conditions,” International Journal of Pressure Vessels and Piping, Vol. 80, No. 12, pp. 831-841, 2003.
18. T. Smolnicki, E. Rusinski, and J. Karlinski, “FEM Modelling of Fatigue Loaded Bolted Flange Joints,” Journal of Achievements in Materials and Manufacturing Engineering, Vol. 22, No. 1, pp. 69-72, 2007.
19. N. Tanlak, F. Sonmez, and E. Talay, “Detailed and Simplified Models of Bolted Joints Under Impact Loading,” The Journal of Strain Analysis for Engineering Design, Vol. 46, No. 3, pp. 213-225, 2011.
20. Y. Luan, Z. Guan, G. D. Cheng, and S. Liu, “A Simplified Nonlinear Dynamic Model for the Analysis of Pipe Structures with Bolted Flange Joints,” Journal of Sound and Vibration, Vol. 331, No. 2, pp. 325-344, 2012.
21. N. Motosh, “Development of Design Charts for Bolts Preloaded up to the Plastic Range,” Journal of Manufacturing Science and Engineering, Vol. 98, No. 3, pp. 849-851, 1976.
22. J. E. Shigley and C. R. Mischke, Mechanical Engineering Design. McGraw Hill, 2001.
23. John H. Bickford, Introduction to The Design and Behavior of Bolted Joints. Boca Raton, 2008.
24. ASME B&;PV Code, Section III Div.1, Subsection NB, Class 1 Components, Rules for Construction of Nuclear Power Plant Components, 2007 Edition.
25. M.W. Kellogg Company, Design of Piping Systems. New York: Wiley, 1956.
26. 黃尹男、柴駿甫、張長菁、沈盈琇、賴姿妤、林凡茹、鄒謹謙、游青青、劉嚴方、陳宏銘,「餘熱移除(RHR)管線系統關鍵元件測試」,龍門電廠機率式風險評估之驗證與評估軟體開發建立第三次期中報告,台灣電力股份有限公司,2014
27. International Organization for Standardization, ISO-16670, Joints Made with Mechanical Fasteners - Quasi-Static Reversed-Cyclic Test Method, 2003 Edition.
28. M. Y. Shen, Z. Y. Lai, J. F. Chai, F. R. Lin, Y. N. Huang, and C. C. Yu, “Numerical Analysis of a RHR Piping System Subjected to Seismic Loading,” Proceedings of Pressure Vessels &; Piping Division Conference, California, USA, 2014.
29. 黃尹男、柴駿甫、張長菁、林凡茹、賴姿妤、沈明毅、游青青、劉嚴方,「餘熱移除(RHR)管線系統擬靜態反覆載重試驗及數值模擬」,龍門電廠機率式風險評估之驗證與評估軟體開發建立第四次期中報告,台灣電力股份有限公司,2014
30. SIMULIA, ABAQUS User Documentation, 2011


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔