(3.231.29.122) 您好!臺灣時間:2021/02/25 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖芳儀
研究生(外文):Fang-Yi Liao
論文名稱:電動大客車變速箱之減速比設計與評估
論文名稱(外文):Design and Evaluation of Transmission Gear Ratio for Electric Buses
指導教授:劉霆劉霆引用關係
口試委員:鄭榮和尤正吉
口試日期:2014-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:119
中文關鍵詞:電動大客車變速箱減速比匹配設計
外文關鍵詞:electric bustransmissiongear ratiomatching design
相關次數:
  • 被引用被引用:2
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對電動大客車,以純電動車輛為基礎,配合煞車動能回收功能,分析多檔位變速箱系統相關參數對系統整體的影響,並發展一變速箱減速比設計方法。多檔位變速箱之設置可擴大車輛之動力輸出範圍,使車輛滿足性能需求,並提升操作效率而節省能源。本文首先利用匹配的方式討論傳動系統參數以及電機參數之匹配特性,以期能使動力系統達到最大輸出效益。再配合大客車行駛特性,進行齒輪變速箱系統的設計,以提升電機操作效率為目標規劃減速比及換檔時機設計方法。接著以陽明山為基礎,建立一有爬坡需求之公車行車型態。最後使用MATLAB撰寫數值模擬程式,對兩不同動力系統配置之電動大客車進行數值模擬,以電池殘電量(SOC)評估新減速比設計方法之效益,討論適合電動大客車行駛狀態之減速比設計。

The purpose of this study is to develop and to evaluate a new design of selection of transmission gear ratio for electric buses by analyzing the interrelations between the parameters of transmission system and performance of pure electric vehicle. Multi-speed transmission provides vehicle with larger range of tractive effort and speed, satisfying the performance requirements and also decreasing the energy consumption. The first step is to match the transmission to the electric machine and the powertrain system to optimize the powertrain output. Then, with the matching features and bus driving behavior, a design method of geared transmission system is constructed, including gear ratio and shift schedule. Improving the efficiency of electric machine and economic performance is the main goal of this approach. Also, a bus driving cycle with road grade is proposed in this study. Finally, a program written in MATLAB is used to simulate two buses with different power systems. State of Charge (SOC) is calculated and the result shows the benefits of this new design method.

目錄
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xii
符號表 xiv
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 電動車輛系統 2
1-2-2 齒輪變速箱 3
1-3 研究動機與目的 5
1-4 研究架構與步驟 6
第二章 理論背景 7
2-1 車輛系統架構 7
2-2 車輛動力學 7
2-2-1 行車阻力 8
2-2-2 車輛驅動力 9
2-3 變速箱原理 10
2-3-1 齒輪變速箱 11
2-3-2 減速比規劃 12
2-4 耗能估算與煞車回充 17
2-5 小結 19
第三章 電動車動力系統匹配分析 20
3-1 動力系統 21
3-1-1 電機 21
3-1-2 傳動系統 24
3-1-3 傳動系統與電機之匹配分析 25
3-2 傳動系統與控制之匹配分析 29
3-2-1 最終減速比 29
3-2-2 總變速比 31
3-2-3 檔數分析 33
3-2-4 換檔時機 34
3-3 馬達與控制之匹配分析 37
3-4 小結 39
第四章 齒輪變速箱設計 41
4-1 減速比設計 41
4-1-1 車輛性能需求─第一及最高檔位 41
4-1-2 中間減速比規劃─效率優先法 42
4-1-3 減速比設計範例 48
4-2 換檔時機 50
4-2-1 操作點效率 50
4-2-2 產生換檔曲線 51
4-2-3 換檔控制策略 58
4-3 小結 59
第五章 車輛數值模擬方法與行車型態 60
5-1 模擬方法 60
5-1-1 ADVISOR車輛模擬軟體 61
5-1-2 以MATLAB軟體撰寫之模擬程式 61
5-2 行車型態 63
5-3 臺灣巴士行車型態規劃 66
5-3-1 台北市市區公車行車型態 66
5-3-2 陽明山行車型態規劃 67
5-4 小結 72
第六章 車輛系統模擬與評估 73
6-1 電動大客車規格設定 73
6-1-1 車輛規格 73
6-1-2 電機規格 74
6-1-3 電池規格 75
6-2 車輛模擬 78
6-2-1 基本減速比規劃法比較 78
6-2-2 新減速比規劃法模擬 81
6-3 模擬結果討論 109
第七章 結論 114
7-1 結論 114
7-2 未來展望 115
參考文獻 117


參考文獻
[1]何義純,2013,“「車談筆記」三定特性:定區、定點、定線,發展電動巴士的最佳條件”,車輛研測資訊,95,012-013。
[2]C.C. Chan, and Y. S. Wong, “The state of the art of electric vehicles technology”, The 4th International Power Electronics and Motion Control Conference, VOL. 1, 2004, P.46 – 57.
[3]C.C. Chan, A. Bouscayrol, K. Chen “Electric hybrid and fuel cell vehicles: architectures and modeling”, IEEE Transactions on Vehicular Technology (2009),pp. 1–11.
[4]陳盈秀,“油電混合動力車之系統匹配與評估”,碩士論文,國立台灣大學機械工程研究所,台北市,台灣,2009。
[5]K.C. Bayindir, M.A. Gozukucuk, A. Teke , “A comprehensive overview of hybrid electric vehicle: powertrain configurations, powertrain control techniques and electronic control units”, Energy Convers Manage, 52 (2) (2011), pp. 1305–1313.
[6]陳建安,林明志,盧廷星,“電動車動力系統參數匹配分析與應用”,中華民國第十五屆車輛工程學術研討會,臺南,2010。
[7]Ehsani, M., Rahman, K. M., and Toliyat, H. A., “Propulsion system design of electric and hybrid vehicles”, IEEE Transactions on Industrial Electronics, VOL. 44, Issue 1, Feb 1997, P.19 – 27.
[8]Halvai Niasar, A., Moghbelli, H., and Vahedi, A.,“Design methodology of drive train for a series-parallel hybrid electric vehicle (SP-HEV) and its power flow control strategy”, IEEE International Conference on Electric Machines and Drives, 2005, P.1549-1554.
[9]&;#38472;&;#20029;平,“基于&;#30005;&;#39537;&;#21160;&;#21464;速器的充&;#30005;式混合&;#21160;力客&;#36710;&;#39537;&;#21160;系&;#32479;&;#35774;&;#35745;”,武漢理工大學,2011。
[10]Gavin Martin, MA, CEng, MIMechE, “Choosing gearbox ratios for on-road vehicles” , Automotive Engineer, 1981 Oct-Nov.
[11]Singh, J., Srinivasa, k., and Singh, J., “Selection of Gear Ratio for Smooth Gear Shifting”, SAE Technical Paper, 2012, doi:10.4271/2012-01-2005.
[12]HASSAN, S. A. “Optimum selection of mechanical gearbox ratios For minimization of the unobtainable power”, Cairo University, Egypt.

[13]Yin, X., Wang, W., Chen, X., and Lu, H., "Multi-Performance Optimization of the Shift Schedule for Stepped Automatic Transmissions," SAE Technical Paper, 2013, doi:10.4271/2013-01-0488.
[14]Sorniotti, A., Subramanyan, S., Turner, A., Cavallino, C. et al., "Selection of the Optimal Gearbox Layout for an Electric Vehicle," SAE Int. J. Engines4(1):1267-1280, 2011, doi:10.4271/2011-01-0946.
[15]Di Nicola, F., Sorniotti, A., Holdstock, T., Viotto, F. et al., "Optimization of a Multiple-Speed Transmission for Downsizing the Motor of a Fully Electric Vehicle," SAE Int. J. Alt. Power. 1(1):134-143, 2012, doi:10.4271/2012-01-0630.
[16]Zhou, X., Walker, P., Zhang, N., and Zhu, B., "Performance Improvement of a Two Speed EV through Combined Gear Ratio and Shift Schedule Optimization," SAE Technical Paper 2013-01-1477, 2013, doi:10.4271/2013-01-1477.
[17]華德動能科技
http://www.racev.com/
[18]台灣立凱電能科技
http://www.aleees.com/
[19]Wong, J. Y., Theory of Ground Vehicles, Wiley-Interscience, 2008.
[20]Lechner, G. and Naunheimer, H., Automotive Transmission:Fundamentals, Selection, Design and Application, Springer, 2011.
[21]David Crolla, Behrooz Mashadi, Vehicle Powertrain Systems : Integration and Optimization, Wiley, 2012.
[22]Wei Liu, Introduction to Hybrid Vehicle System Modeling and Control, Wiley, 2013.
[23]Katragadda, S., Bata, R., Wang, W., Gautam, M. et al., “A Correlation Study Between Two Heavy-Duty Vehicle Chassis Dynamometer Emissions Testing Facilities,” SAE Technical Paper 931788, 1993, doi:10.4271/931788.
[24]Ehsani, M., Gao, Y., Gay, S. E. and Emadi A., Modern Electric, Hybrid Electric, and Fuel Cell Vehicles:Fundamentals, Theory, and Design, CRC Press, 2004.
[25]UQM Technologies Inc.
http://uqm.com/
[26]F.J. Joachim, J. Borner and N. kurz, “How to Minimize Power Losses in Transmissions, Axles and Steering Systems”, Gear Technology, 2012.

[27]徐灝,機械設計手冊,建宏出版社,民國84年,第2卷第8篇pp.38-43,第3卷第25篇pp.139-149, 180-184,第4卷第29篇pp.295-326。
[28]RoyMech- Gear Efficiency Equation
http://www.roymech.co.uk/Useful_Tables/Drive/Gear_Efficiency.html
[29]Kuria, James; Kihiu, John, “Prediction of overall efficiency in multistage gear trains,” International Journal of Mechanical Systems Science and Engineering, 5;3, 2011.
[30]鄭博仁,“機械式自行車自動變速箱之理念設計方法”,碩士論文,國立台灣大學機械工程研究所,台北市,台灣,2012。
[31]葛安林,車輛自動變速理論與設計,機械工業出版社,1993。
[32]Michael A. Roscher, Roland Michel, and Wolfgang Leidholdt, “Improving Energy Conversion Efficiency by means of Power Splitting in Dual Drive Train EV Applications,” International Journal of Vehicular Technology. 2013.
[33]蘇振維,車輛動態能源消耗與溫室氣體排放特性之研究—以大客車為例(2/2),台北市,交通部運研所,2012。
[34]ADVISOR 3.2 documentation, National Renewable Energy Laboratory , 2001.
[35]Karunaratne, I.W.D.R.S. , “Efficiency analysis of optimized HEV against conventional vehicles, in a Sri Lankan drive cycle,” University of Moratuwa ,2009.
[36]吳浴沂。複合動力低污染公車關鍵技術及測試方法研究。94年度「環保署/國科會空污防制科研合作計畫」(計畫編號:NSC 94-EPA-Z-027-001) 。
[37]陽明山國家公園
http://www.ymsnp.gov.tw/
[38]Barlow, T. J., Latham, S., McCrae, I. S., &; Boulter, P. G. (2009). A reference book of driving cycles for use in the measurement of road vehicle emissions (Vol. 1, No. 1, pp. 1-280).
[39]Winston Battery
http://en.winston-battery.com/index.php/products/power-battery/category/lyp-battery
[40]吳嘉維,“零排放電動大客車之儲能系統構想設計與分析”,碩士論文,國立台灣大學機械工程研究所,台北市,台灣,2012。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔