(3.239.33.139) 您好!臺灣時間:2021/03/02 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳國祥
研究生(外文):Kuo-Hsiang Chen
論文名稱:液珠式微流體晶片之生質柴油產製
論文名稱(外文):A Droplet-Based Micro Chip for Biodiesel Production
指導教授:楊鏡堂楊鏡堂引用關係
口試委員:楊瑞珍吳宗信鄭兆珉林致廷
口試日期:2014-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:生質柴油微反應器轉酯化反應液珠式微流體替代能源
外文關鍵詞:biodieselmicroreactortransesterificationdroplet-based microfluidic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:309
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在開發一創新微流體反應元件,藉在微流體系統下表面積體積比較大的特性,大幅增加其反應介面以提高常溫條件下轉酯化反應之轉化率。利用簡單的十字結構並以液珠生成的方式進行生質柴油的產製,結果可於常溫攝氏23度、反應時間60秒內達到99%的反應轉化率,相較於使用複雜流道結構對反應流場進行擾動以強化混合卻還須進行加溫的方式更佳。
實驗中所使用的液珠式反應元件分成微米與毫米兩種流道,於常溫攝氏23度下進行實驗時,微米流道可生成直徑約110微米的液珠,並在反應時間10秒的情況下達到62.4%的反應轉化率;而毫米流道所生成的液珠直徑約1360微米,體積大於微米流道液珠將近二千倍,卻可在反應時間40秒達到90%的轉化率,將反應時間延長至60秒則更可達到99.9%的完全反應;因此產量高、製作簡單且便宜的毫米流道比起微米流道更具有優勢及發展潛力。
液珠形式的反應方法不只可直接提升其反應介面以有效地加速反應,還可藉由反應後生質柴油會直接溶於甲醇相,而甘油則會留於子彈型液珠中的方式來進行後續分離、純化研究的設計,例如可在下游流道處加裝一表面經改質的額外支流將反應後的液珠導走以移除甘油與殘餘大豆油,並在分離後導入純水利用擴散的方式洗去甲醇與催化劑。利用本研究所開發出具有低耗能及高反應速率等優點的替代能源產製系統,預期可大幅提升生質能源於市場上之競爭力。


誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖表目錄 vii
符號說明 ix
第一章 前言 1
1.1 研究背景 1
1.2 研究動機與願景 2
第二章 文獻回顧 3
2.1 微流體系統 (microfluidics system) 3
2.2 微混合器 (micromixer) 4
2.2.1 主動式微混合器 4
2.2.2 被動式微混合器 6
2.3 微反應器 (microreactor) 8
2.3.1 化學微反應器 8
2.3.2 生物微反應器 9
2.4 液珠式微流體 (droplet-based microfluidics) 10
2.4.1 液珠生成 10
2.4.2 液珠控制與應用 11
2.5 轉酯化反應產製生質柴油 12
2.5.1 傳統大型反應器 12
2.5.2 超臨界流體法 13
2.5.3 微流體轉酯化反應器 13
2.6 生質柴油轉化率量測分析 14
2.7 文獻回顧分析 15
第三章 研究方法 16
3.1 研究架構 16
3.2 設計概念 17
3.3 理論分析 18
3.3.1 無因次參數分析 18
3.4 元件製作與實驗材料 19
3.4.1 流道繪製 20
3.4.2 母模製作 21
3.4.3 流道成形 26
3.4.4 化學藥品製備 29
3.5 實驗設置與驗證 29
3.5.1 染料混合試驗 30
3.5.2 超導磁體核磁共振儀 32
3.5.3 生質柴油轉化率計算分析 34
第四章 實驗結果與討論 35
4.1 微系統之轉酯化反應 35
4.1.1 SAR型微反應器 35
4.1.2 液珠型微反應器 39
4.1.3 液珠型微反應器之轉化率分析結果 45
4.2 毫米級液珠型反應器 49
4.2.1 反應參數最佳化 49
4.2.2 液珠尺寸與轉化率之探討 51
第五章 結論與未來展望 53
5.1 結論 53
5.2 未來展望 56
5.3 甘梯圖 57
第六章 參考文獻 58


Abbyad, P., Dangla, R., Alexandrou, A., and Baroud, C. N., "Rails and anchors: Guiding and trapping droplet microreactors in two dimensions," Lab on a Chip, 2011, Vol. 11, pp. 813-821.
Anna, S. L., Bontoux, N., and Stone, H. A., "Formation of dispersions using “flow focusing” in microchannels," Applied Physics Letters, 2003, Vol. 82, pp. 364.
Bhagat, A. A. S., and Papautsky, I., "Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles," Journal of Micromechanics and Microengineering, 2008, Vol. 18, 085005.
Bottausci, F., Cardonne, C., Meinhart, C., and Mezi&;#263;, I., "An ultrashort mixing length micromixer: The shear superposition micromixer, " Lab on a Chip, 2007, Vol. 7, pp. 396-398.
Chen, C. K., and Cho, C. C., "A combined active/passive scheme for enhancing the mixing efficiency of microfluidic devices," Chemical Engineering Science, 2008a, Vol. 61, pp. 2959-2967.
Chen, C. K., and Cho, C. C., "Electrokinetically driven flow mixing utilizing chaotic electric fields," Microfluidics and Nanofluidics, 2008b, Vol. 5, pp. 785-793.
Chen, K. H., Fang, W. F., Chen, Y. T., Fang, J. M., and Yang, J. T., "Microflow synthesis of saccharide nucleoside diphosphate with cross-coupling reactions of monophosphate components," Chemical Engineering Journal, 2012, Vol. 198-199, pp. 33-37.
Chen, L., Lee, S., Lee, M., Lim, C., Choo, J., Park, J. Y., Lee, S., Joo, S. W., Lee, K. H., and Choi, Y. W., "DNA hybridization detection in a microfluidic channel using two fluorescently labelled nucleic acid probes," Biosens. Bioelectron., 2008c, Vol. 23, pp. 1878-1882.
Chen, Y. T., Chen, K. H., Fang, W. F., Tsai, S. H., Fang, J. M., and Yang, J. T., "Flash synthesis of carbohydrate derivatives in chaotic microreactors," Chemical Engineering Journal, 2011, Vol. 174, pp. 421-424.
Chung, C. K., and Shih, T. R., "A rhombic micromixer with asymmetrical flow for enhancing mixing," Journal of Micromechanics and Microengineering, 2007, Vol. 17, pp. 2495-2504.
Chung, C. K., and Shih, T. R., "Effect of geometry on fluid mixing of the rhombic micromixers," Microfluidics and Nanofluidics, 2007, Vol. 4, pp. 419-425.
Coleman, J. T., and Sinton, D., "A sequential injection microfluidic mixing strategy," Microfluidics and Nanofluidics, 2005, Vol. 1, pp. 319-327.
Coleman, J. T., McKechnie, J., and Sinton, D., "High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion," Lab on a Chip, 2006, Vol. 6, pp. 1033-1039.
Costa Neto, P. R., Balparda Caro, M. S., Mazzuco, L. M., and Nascimento, M. d. G., "Quantification of soybean oil ethanolysis with 1H NMR," Journal of the American Oil Chemists'' Society, 2004, Vol. 81, pp. 1111-1114.
Diasakou, M., Louloudi, A., and Papayannakos, N., "Kinetics of the non-catalytic transesterification of soybean oil," Fuel, 1998, Vol. 77, pp. 1297-1302.
Fang, W. F., and Yang, J. T., "A novel microreactor with 3d rotating flow to boost fluid reaction and mixing of viscous fluids," Sensors and Actuators B: Chemical, 2009, Vol. 140, pp. 629-642.
Flores, I. S., Godinho, M. S., de Oliveira, A. E., Alcantara, G. B., Monteiro, M. R., Menezes, S. M. C., and Liao, L. M., "Discrimination of biodiesel blends with 1H NMR spectroscopy and principal component analyses," Fuel, 2012, Vol. 99, pp. 40-44.
Foley, J. O., Mashadi-Hossein, A., Fu, E., Finlayson, B. A., and Yager, P., "Experimental and model investigation of the time-dependent 2-dimensional distribution of binding in a herringbone microchannel," Lab on a Chip, 2008, Vol. 8, pp. 557-564.
Freedman, B., Pryde, E. H., and Mounts, T. L., "Variables affecting the yields of fatty esters from transesterified vegetable oils," Journal of the American Oil Chemists Society, 1984, Vol. 61, pp. 1638-1643.
Frenz, L., El Harrak, A., Pauly, M., Begin-Colin, S., Griffiths, A. D., and Baret, J. C., "Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles," Angew. Chem. Int. Ed. Engl., 2008, Vol. 47, pp. 6817-6820.
Garstecki, P., Fuerstman, M. J., Stone, H. A., and Whitesides, G. M., "Formation of droplets and bubbles in a microfluidic t-junction-scaling and mechanism of break-up," Lab on a Chip, 2006, Vol. 6, pp. 437-446.
Gelbard, G., Bres, O., Vargas, R. M., Vielfaure, F., and Schuchardt, U. F., "1H nuclear magnetic resonance determination of the yield of the transesterification of rapeseed oil with methanol," Journal of the American Oil Chemists’ Society, 1995, Vol. 72, pp. 1239-1241.
Guan, G., Kusakabe, K., Sakurai, N., and Moriyama, K., "Continuous production of biodiesel using a microtube reactor," Chemical Engineering Transactions, 2008, Vol. 14, pp. 237-244.
Guan, G., Kusakabe, K., Moriyama, K., and Sakurai, N., "Transesterification of sunflower oil with methanol in a microtube reactor," Industrial &; Engineering Chemistry Research, 2009, Vol. 48, pp. 1357-1363.
Guan, G. Q., Teshima, M., Sato, C., Son, S. M., Irfan, M. F., Kusakabe, K., Ikeda, N., and Lin, T. J., "Two-phase flow behavior in microtube reactors during biodiesel production from waste cooking oil," American Institute Chemical Engineers Journal, 2010, Vol. 56, pp. 1383-1390.
Hardt, S., and Schonfeld, F., "Laminar mixing in different interdigital micromixers: II. Numerical simulations," American Institute Chemical Engineers Journal, 2003, Vol. 49, pp. 578-584.
Hessel, V., Hardt, S., Lowe, H., and Schonfeld, F., "Laminar mixing in different interdigital micromixers: I. Experimental characterization," American Institute Chemical Engineers Journal, 2003, Vol. 49, pp. 566-577.
Hsiung, S. K., Lee, C. H., Lin, J. L., and Lee, G. B., "Active micro-mixers utilizing moving wall structures activated pneumatically by buried side chambers," Journal of Micromechanics and Microengineering, 2007, Vol. 17, pp. 129-138.
Hsu, M. H., Fang, W. F., Lai, Y. H., Yang, J. T., Tsai, T. L., and Shieh, D. B., "Enhanced mobile hybridization of gold nanoparticles decorated with oligonucleotide in microchannel devices," Lab on a Chip, 2010, Vol. 10, pp. 2583-2587.
Huang, C. J., Fang, W. F., Ke, M. S., Chou, H. Y., and Yang, J. T., "A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism," Lab on a Chip, 2014, Vol. 14, pp. 2057-2062.
Ito, Y., and Komori, S., "A vibration technique for promoting liquid mixing and reaction in a microchannel," American Institute of Chemical Engineers Journal, 2006, Vol. 52, pp. 3011-3017.
Jain, M., Yeung, A., and Nandakumar, K., "Efficient micromixing using induced-charge electroosmosis," Journal of Microelectromechanical Systems, 2009, Vol. 18, pp. 376-384.
Johnson, T. J., Ross, D., and Locascio, L. E., "Rapid microfluidic mixing," Analytical Chemistry, 2002, Vol. 74, pp. 45-51.
Kanno, K., Maeda, H., Izumo, S., Ikuno, M., Takeshita, K., Tashiro, A., and Fujii, M., "Rapid enzymatic transglycosylation and oligosaccharide synthesis in a microchip reactor," Lab on a Chip, 2002, Vol. 2, pp. 15-18.
Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., "A serpentine laminating micromixer combining splitting/recombination and advection," Lab on a Chip, 2005b, Vol. 5, pp. 739-747.
Lee, C. Y., Lee, G. B., Fu, L. M., Lee, K. H., and Yang, R. J., "Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect," Journal of Micromechanics and Microengineering, 2004, Vol. 14, pp. 1390-1398.
Lee, J., and Kwon, S., "Mixing efficiency of a multilamination micromixer with consecutive recirculation zones," Chemical Engineering Science, 2009, Vol. 64, pp. 1223-1231.
Lin, J. L., Lee, K. H., and Lee, G. B., "Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials," Electrophoresis, 2005, Vol. 26, pp. 4605-4615.
Lin, J. L., Lee, K. H., and Lee, G. B., "Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes," Journal of Micromechanics and Microengineering, 2006, Vol. 16, pp. 757-768.
Lob, P., Pennemann, H., and Hessel, V., "g/l-dispersion in interdigital micromixers with different mixing chamber geometries," Chemical Engineering Journal, 2004, Vol. 101, pp. 75-85.
Lob, P., Pennemann, H., Hessel, V., and Men, Y., "Impact of fluid path geometry and operating parameters on l/l-dispersion in interdigital micromixers," Chemical Engineering Science, 2006, Vol. 61, pp. 2959-2967.
Martinez Arias, E. L., Fazzio Martins, P., Jardini Munhoz, A. L., Gutierrez-Rivera, L., and Maciel Filho, R., "Continuous synthesis and in situ monitoring of biodiesel production in different microfluidic devices," Industrial &; Engineering Chemistry Research, 2012, Vol. 51, pp. 10755-10767.
Moctar, A. O. E., Aubry, N., and Batton, J., "Electro-hydrodynamic micro-fluidic mixer," Lab on a Chip, 2003, Vol. 3, pp. 273-280.
Nguyen, N. T., and Wu, Z., "Micromixers—a review," Journal of Micromechanics and Microengineering, 2004, Vol. 15, pp. R1-R16.
Nie, Z., Seo, M., Xu, S., Lewis, P. C., Mok, M., Kumacheva, E., Whitesides, G. M., Garstecki, P., and Stone, H. A., "Emulsification in a microfluidic flow-focusing device: Effect of the viscosities of the liquids," Microfluidics and Nanofluidics, 2008, Vol. 5, pp. 585-594.
Oh, D. W., Jin, J. S., Choi, J. H., and Kim, H. Y., "A microfluidic chaotic mixer using ferrofluid," Journal of Micromechanics and Microengineering, 2007, Vol. 17, pp. 2077-2083.
Pappaert, K., Vanderhoeven, J., Van Hummelen, P., Dutta, B., Clicq, D., Baron, G. V., and Desmet, G., "Enhancement of DNA micro-array analysis using a shear-driven micro-channel flow system," Journal of Chromatography: A, 2003, Vol. 1014, pp. 1-9.
Park, J. M., Kim, D. S., Kang, T. G., and Kwon, T. H., "Improved serpentine laminating micromixer with enhanced local advection," Microfluidics and Nanofluidics, 2007, Vol. 4, pp. 513-523.
Pattekar, A. V., and Kothare, M. V., "A microreactor for hydrogen production in micro fuel cell applications," Journal of Microelectromechanical Systems, 2004, Vol. 13, pp. 7-18.
Roy, T., Sinha, A., Chakraborty, S., Ganguly, R., and Puri, I. K., "Magnetic microsphere-based mixers for microdroplets," Physics of Fluids, 2009, Vol. 21, 027101.
Saka, S., and Kusdiana, D., "Biodiesel fuel from rapeseed oil as prepared in supercritical methanol," Fuel, 2001, Vol. 80, pp. 225-231.
Schwesinger, N., Frank, T., and Wurmus, H., "A modular microfluid system with an integrated micromixer," Journal of Micromechanics and Microengineering, 1996, Vol. 6, pp. 99-102.
Stoeber, B., Hu, C.-M. J., Liepmann, D., and Muller, S. J., "Passive flow control in microdevices using thermally responsive polymer solutions," Physics of Fluids, 2006, Vol. Vol. 18, pp. 053103.
Stoeber, B., Liepmann, D., and Muller, S., "Strategy for active mixing in microdevices," Physical Review E, 2007, Vol. 75, 066314.
Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., "Chaotic mixer for microchannels," Science, 2002a, Vol. 295, pp. 647-651.
Stroock, A. D., Dertinger, S. K., Whitesides, G. M., and Ajdari, A., "Patterning flows using grooved surfaces," Analytical Chemistry, 2002b, Vol. 74, pp. 5306-5312.
Sun, J., Ju, J. X., Ji, L., Zhang, L. X., and Xu, N. P., "Synthesis of biodiesel in capillary microreactors," Industrial &; Engineering Chemistry Research, 2008, Vol. 47, pp. 1398-1403.
Sun, P., Sun, J., Yao, J., Zhang, L., and Xu, N., "Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions," Chemical Engineering Journal, 2010, Vol. 162, pp. 364-370.
Sun, P. Y., Wang, B., Yao, J. F., Zhang, L. X., and Xu, N. P., "Fast synthesis of biodiesel at high throughput in microstructured reactors," Industrial &; Engineering Chemistry Research, 2010, Vol. 49, pp. 1259-1264.
Thorsen, T., Roberts, R. W., Arnold, F. H., and Quake, S. R., "Dynamic pattern formation in a vesicle-generating microfluidic device," Physical Review Letters, 2001, Vol. 86, pp. 4163-4166.
Tice, J. D., Song, H., Lyon, A. D., and Ismagilov, R. F., "Formation of droplets and mixing in multiphase microfluidics at low values of the reynolds and the capillary numbers," Langmuir, 2003, Vol. 19, pp. 9127-9133.
Tofteberg, T., Skolimowski, M., Andreassen, E., and Geschke, O., "A novel passive micromixer: Lamination in a planar channel system," Microfluidics and Nanofluidics, 2009, Vol. 8, pp. 209-215.
Toonder, J., Bos, F., Broer, D., Filippini, L., Gillies, M., de Goede, J., Mol, T., Reijme, M., Talen, W., Wilderbeek, H., Khatavkar, V., and Anderson, P., "Artificial cilia for active micro-fluidic mixing," Lab on a Chip, 2008, Vol. 8, pp. 533-541.
Tseng, W. K., Lin, J. L., Sung, W. C., Chen, S. H., and Lee, G. B., "Active micro-mixers using surface acoustic waves on y-cut 128° LiNbO3," Journal of Micromechanics and Microengineering, 2006, Vol. 16, pp. 539-548.
Tung, K. Y., Li, C. C., and Yang, J. T., "Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer," Microfluidics and Nanofluidics, 2009, Vol. 7, pp. 545-557.
Varady, M. J., McLeod, L., Meacham, J. M., Degertekin, F. L., and Fedorov, A. G., "An integrated mems infrastructure for fuel processing: Hydrogen generation and separation for portable power generation," Journal of Micromechanics and Microengineering, 2007, Vol. 17, pp. S257-S264.
Wang, L., and Yang, J. T., "An overlapping crisscross micromixer using chaotic mixing principles," Journal of Micromechanics and Microengineering, 2006, Vol. 16, pp. 2684-2691.
Wang, L., Yang, J. T., and Lyu, P. C., "An overlapping crisscross micromixer," Chemical Engineering Science, 2007, Vol. 62, pp. 711-720.
Wang, Y., Zhe, J., Chung, B. T. F., and Dutta, P., "A rapid magnetic particle driven micromixer," Microfluidics and Nanofluidics, 2008, Vol. 4, pp. 375-389.
Wen, Z., Yu, X., Tu, S. T., Yan, J., and Dahlquist, E., "Intensification of biodiesel synthesis using zigzag micro-channel reactors," Bioresour. Technol., 2009, Vol. 100, pp. 3054-3060.
West, J., Karamata, B., Lillis, B., Gleeson, J. P., Alderman, J., Collins, J. K., Lane, W., Mathewson, A., and Berney, H., "Application of magnetohydrodynamic actuation to continuous flow chemistry," Lab on a Chip, 2002, Vol. 2, pp. 224-230.
Whitesides, G. M., "The origins and the future of microfluidics," Nature, 2006, Vol. 442, pp. 368-373.
Wu, H. Y., and Liu, C. H., "A novel electrokinetic micromixer," Sensors and Actuators A: Physical, 2005, Vol. 118, pp. 107-115.
Xie, T., Zhang, L., Xu, N., "Biodiesel synthesis in microreactors," Green Processing and Synthesis, 2012, Vol. 1, pp. 61-70.
Yang, J. T., and Lin, K. W., "Mixing and separation of two-fluid flow in a micro planar serpentine channel," Journal of Micromechanics and Microengineering, 2006, Vol. 16, pp. 2439-2448.
Yang, J. T., Chen, C. K., Hu, I. C., and Lyu, P. C., "Design of a self-flapping microfluidic oscillator and diagnosis with fluorescence methods," Journal of Microelectromechanical Systems, 2007, Vol. 16, pp. 826-835.
Yang, S. Y., Lin, J. L., and Lee, G. B., "A vortex–type micromixer utilizing pneumatically driven membranes," Journal of Micromechanics and Microengineering, 2009, Vol. 19, 035020.
Yang, S. Y., Cheng, F. Y., Yeh, C. S., and Lee, G. B., "Size-controlled synthesis of gold nanoparticles using a micro-mixing system," Microfluidics and Nanofluidics, 2010, Vol. 8, pp. 303-311.
Yu, X. H., Wen, Z. Z., Lin, Y., Tu, S. T., Wang, Z. D., and Yan, J. Y., "Intensification of biodiesel synthesis using metal foam reactors," Fuel, 2010, Vol. 89, pp. 3450-3456.
Zhang, J., Coulston, R. J., Jones, S. T., Geng, J., Scherman, O. A., and Abell, C., "One-step fabrication of supramolecular microcapsules from microfluidic droplets," Science, 2012, Vol. 335, pp. 690-694.
方偉峰,2009,微生化反應器之研發與物種速度暨濃度場之同步診測,國立清華大學動力機械工程學系博士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔