跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:文端明
研究生(外文):Duan-Ming Wen
論文名稱:應用馬可夫鏈評估鋰電池系統之 SOC
論文名稱(外文):SOC Estimation of Lithium Battery Systems by Markov Chains
指導教授:吳文方
指導教授(外文):Wen-Fang Wu
口試委員:劉霆詹魁元
口試委員(外文):Tyng LiuKuei-Yuan Chan
口試日期:2014-04-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:60
中文關鍵詞:電動車馬可夫鏈鋰電池電池SOC
外文關鍵詞:electric vehicleMarkov chainlithium batterystate of charge (SOC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來綠能(Green Power) 意識高漲,其中碳排放量和石油危機是兩個重要的
議題,電動車即是順應這股趨勢所發展的產物。電動車不可缺少的元件之一為其
電池,而由於鋰電池放電量大且具穩定、充放電效率高、循環壽命長、體積小等
優點,已逐漸成為電動車動力來源的主流。評估電動車之電池效率常用到SOH
(State of Health)與SOC (Stare of Charge),其中有關SOC 電池電量的量測技術以庫
倫積分法(Coulomb Integral Method) 為主,由於其方便與精確等特性,已廣泛被
應用在電動車SOC 之量測,但現今尚未有技術能準確估測SOC,特別的,量測與
評估的不確定性常被忽略。就此,本研究針對庫倫積分法量測計算上的隨機誤差,
建立數學上的馬可夫模型(Markov Model) ,藉以評估電動車行駛過程中SOC 逐
時下降的趨勢,以及任意使用時間點,處於各不同狀態SOC 之機率。本研究依據
他人實驗所得之電壓、放電量等數據,建立馬可夫模型,並考量電池出廠時的電
壓隨機變異性,以及電池在特定條件下充放電循環過程中老化衰減之隨機性,得
到鋰單電池在各使用時間點電量用盡之機率,最後再應用系統可靠度理論,推演
討論電池模塊(Battery Pack) 之 SOC。本研究所提出的方法能簡單有效模擬估算
真實環境下電池系統動態放電之SOC,並透過馬可夫分析模型得到各使用時間點
電量耗盡的機率,提供製造廠商進行符合ISO26262 等規範所需之風險評估。

With the growing consciousness of green power in recent years, the emissions of
carbon dioxide and oil crisis have been two critical issues. The electric vehicle is one of
many products developed with this trend. Batteries are indispensable to electric vehicles.
In particular, lithium batteries have gradually become the main power sources of electric
vehicles for the merits such as the stability and high efficiency of discharge, long cycle
life, small size, etc. When it comes to the way to evaluate the efficiency of electric
vehicles, State of Health (SOH) and State of Charge (SOC) are often applied. The latter
is mainly based on Coulomb integral method, and its property of convenience and
precision is widely applied to the SOC estimation of electric vehicles. However, no
available techniques can thoroughly be applied to estimate SOC. Therefore, this
research aims to direct the random errors of the estimation of the Coulomb integral
method and establish a Markov model for assessing the exhaustion of SOC along with
any time of discharge. This research is based on the voltage and capacity data from the
reference to establish the Markov model and take random differences and aging of
batteries into account. By doing so, we can come to realize the possibility of any battery
exhaustion clearly and then apply the system reliability theory to estimate the SOC of
batteries pack. With this research, we can efficiently estimate the SOC of dynamic
discharge of battery systems, and through the Markov model obtain the probability
distribution of battery exhaustion at any time. The results can be used for manufacturing
companies to carry out risk assessment for standards such as ISO26262.

CONTENTS
口試委員會審定書....................................................................................................... #
誌謝............................................................................................................................... i
中文摘要...................................................................................................................... ii
ABSTRACT ................................................................................................................ iii
CONTENTS ................................................................................................................ iv
LIST OF FIGURES ..................................................................................................... vi
LIST OF TABLES ..................................................................................................... viii
第一章 緒論....................................................................................................... 1
1.1 前言……………………….. ....................................................................... 1
1.2 研究動機與目的........................................................................................ 1
1.3 文獻回顧.................................................................................................... 2
1.3.1 電池SOC 模型................................................................................. 3
1.3.2 電池SOH 模型................................................................................. 3
1.4 研究方法與流程........................................................................................ 4
1.5 論文架構.................................................................................................... 5
第二章 電池相關理論概述................................................................................ 7
2.1 電池工作原理及比較................................................................................. 7
2.2 電池SOC................................................................................................... 8
2.3 電池SOH................................................................................................... 9
2.4 電池模塊/系統......................................................................................... 10
第三章 可靠度與馬可夫鏈概論...................................................................... 14
v
3.1 可靠度相關理論...................................................................................... 14
3.1.1 可靠度簡介..................................................................................... 14
3.1.2 可靠度數理概論............................................................................. 15
3.1.3 系統可靠度..................................................................................... 20
3.2 馬可夫鏈.................................................................................................. 21
3.2.1 馬可夫鏈簡介................................................................................. 21
3.2.2 馬可夫模型之特殊性質.................................................................. 23
第四章 案例模擬與分析.................................................................................. 27
4.1 馬可夫模型建構與執行........................................................................... 27
4.2 電池之隨機差異...................................................................................... 29
4.3 電池之循環衰減...................................................................................... 29
4.4 電池系統可靠度...................................................................................... 30
4.5 可靠度分析.............................................................................................. 31
第五章 結論..................................................................................................... 53
REFERENCES ........................................................................................................... 55

[1] 集邦產研,綠能錢潮:擁抱電動車的兆元商機,集邦科技委託華文聯合出版
平台,2009。
[2] 盧樹台、陳仁和、謝文桐,任國光、余安錠,「電動車用鋰電池之殘電量估測」,
清雲學報第三十一卷,第三期,2011。
[3] International Energy Outlook, U.S. Energy Information Administration (EIA) and
International Energy Agency, 2011.
[4] R. Schmidt, “Information Technology Energy Usage and Our Planet,” in
Proceedings of the 11th Thermal and Thermomechanical Phenomena in Electronic
Systems Conference, Orlando, USA, pp. 1255-1275, 2008.
[5] S. F. Tie, C. W. Tan, “A Review of Energy Sources and Energy Management
System in Electric Vehicles,” Renewable and Sustainable Energy, Vol. 20, pp.
82-102, 2013.
[6] J. Petersen, Global Autos: Don''t Believe the Hype -- Analyzing the Costs &;
Potential of Fuel-Efficient Technology, Bernstein Global Wealth Management
Press, 2011.
[7] D. T. Lee, S. J. Shiah, C. M. Lee and Y. C. Wang, “State-of-Charge Estimation
for Electric Scooters by Using Learning Mechanisms,” IEEE Transaction on
Vehicle. Technology, Vol. 56, pp. 544-556, 2007.
[8] O. Caumont, E. C. de Lille, V. d''Ascq, “Energy Gauge for Lead Acid Batteries in
Electric Vehicles,” IEEE Transactions on Energy Conversion, Vol. 15, pp.
354-360, 2000.
[9] 戴海峰、張曉龍、顧偉軍、魏學哲、孫澤昌,電動汽車用動力鋰離子電池壽
命問題研究綜述,同濟大學汽車學院新能源汽車工程中心,2010。
56
[10] M. Doyle, T. F. Fuller and J. Newman, “Modeling of Galvanostatic Charge and
Discharge of the Lithium/Polymer/Insertion Cell,” Journal of the Electrochemical
Society, Vol. 140, pp. 1526-1533, 1993.
[11] T. F. Fuller, M. Doyle and J. Newman, “Simulation and Optimization of the Dual
Lithium Ion Insertion Cell,” Journal of the Electrochemical Society, Vol. 141, pp.
1-10, 1994.
[12] D. Baert, A. Vervaet, “Lead-Acid Battery Model for the Derivation of Peukert’s
Law,” Electrochimica Acta, Vol 44, pp. 3491-3504, 1999.
[13] D. Rakhmatov, S. Vrudhula, “An Analytical High-Level Battery Model for Use in
Energy Management of Portable Electronic Systems,” in Proceedings of the
International Conference on Computer Aided Design, San Jose, USA, pp. 488-493,
2001.
[14] J. F. Manwell, J. G. McGowan, “Lead Acid Battery Storage Model for Hybrid
Energy Systems,” Solar Energy, Vol 50, pp. 399-405, 1993.
[15] C. Chiasserini and R. Rao, “Pulsed Battery Discharge in Communication
Devices,” in Proceedings of The 5th International Conference on Mobile
Computing and Networking, New York, USA, pp. 88-95, 1999.
[16] C. Chiasserini and R. Rao, “Energy Efficient Battery Management,” IEEE Journal
on Selected Areas in Communications, Vol. 19, pp. 1235-1245, 2001.
[17] G. L. Plett. “Extended Kalman Filtering for Battery Management Systems of LiPB
- Based HEV Battery Packs,” Power Sources, Vol. 134, pp. 252-261, 2004.
[18] H. Nakamura, D. Yumoto, Y. Ochi. “The Application of Adaptive Digital Filter for
the Internal State Estimate on Batteries,” in Proceedings of the SCIE Annual
Conference, Fukui, Japan, pp. 2239-2244, 2003.
[19] I. S. Kim. “A Technique for Estimating the State of Health of Lithium Batteries
57
through a Dual-Sliding-Mode Observer,” IEEE Transactions on Power
Electronics, Vol. 25, pp. 1013-1022, 2010.
[20] A. T. Stamps, C. E. Holland, R. E. White, “Analysis of Capacity Fade in a
Lithium Ion Battery,” Power Sources, Vol. 150, pp. 229-239, 2005.
[21] M. Verburg, B. Koch, “Generalized Recursive Algorithm for Adaptive
Multiparameter Regression,” Journal of the Electrochemical Society, Vol. 153, pp.
187-211, 2006.
[22] M. R. Jongerden, B. R. Haverkort, Battery Modeling, University of Twente Press,
2008.
[23] D. Doerffel, S. A. Sharkh, Large Lithium-Ion Batteries – a Review, EMA Elektro
Mobil Ausstellung Press, 2012.
[24] Z. O. Olaofe, “Application of Neural Network to Wind Energy Conversion
Systems,” Renewable Energy Technology, Vol. 4, pp. 265-294, 2013.
[25] T. T. Chow, J. Ji, W. He, “Photovoltaic-Thermal Collector System for Domestic
Application,” Solar Energy, Vol. 129, pp. 205-209, 2006
[26] M. Graetzel, A. J. Janssen, B. Mitzi, H. Sargent, “Materials Interface Engineering
for Solution-Processed Photovoltaics,” Nature, Vol. 448, pp. 304-312, 2012.
[27] V. Etacheri, R. Marom, R. Elazari, “Challenges in the Development of Advanced
Li-Ion Batteries,” Energy and Environmental Science, Vol. 4, pp. 3243-3262,
2011.
[28] J. Zhang, J. Lee, “A Review on Prognostics and Health Monitoring of Li-Ion
Battery,” Power Sources, Vol. 196, pp. 6007-6014, 2011.
[29] 中華人民共和國國家知識產權局,申請公布號CN 103163466 A,2013。
[30] E. Meissner, G. Richter, “Battery Monitoring and Electrical Energy Management:
Precondition for Future Vehicle Electric Power Systems,” Power Sources, Vol.
58
116, pp. 79-98, 2003.
[31] H. F. Dai., X. Z. Wei, Z. C. Sun, “Online Cell SOC Estimation of Li-Ion Battery
Packs Using a Dual Time-Scale,” Applied Energy, Vol. 95, pp. 227-237, 2012.
[32] S. C. Bose, “Battery State of Health Estimation through Coup De Fouet Field
Experience,” in Proceedings of 22nd International Telecommunications Energy
Conference in Austin, USA, 2000.
[33] D. Andrea, Battery Management Systems for Large Lithium-Ion Battery, Artech
House Press, 2010.
[34] R. P. Ramasamy, R. E. White, B. N. Popov, “Calendar Life Performance of Pouch
Lithium-Ion Cells,” Power Sources, Vol. 141, pp. 298-306, 2005.
[35] Q. Zhang, E. White, “Capacity Fade Analysis of a Lithium Ion Cell,” Power
Sources, Vol. 179, pp. 793-798, 2008.
[36] K. Takei, K. Kumai, “A Review on the Key Issues for Lithium-Ion Battery
Management in Electric Vehicles,” Power Sources, Vol. 226, pp. 272-288, 2012.
[37] K. L. Huang, Z. X. Wang, S. Q. Liu, Lithium Ion Battery Mechanism and Key
Technology, Chemical Industry Press, 2007.
[38] S. S. Choi, H. S. Lim, “Capacity Deterioration Characteristics of Li-Ion Batteries
for Mobile Terminals,” NTT DoCoMo Technical, Vol.7, pp. 66-70, 2002.
[39] R. Spotnitz, J. Franklin, “Abuse Behavior of High-Power, Lithium-Ion Cells,”
Power Sources, Vol. 113, pp. 81-100, 2003.
[40] D. P. Abraham, “Surface Changes on LiNi0.8Co0.2O2 Particles During Testing of
High-Power Lithium-Ion Cells,” Electrochemistry Communications, Vol. 4, pp.
620-625, 2002.
[41] J. Wang, P. Liu, J. H. Garner, “Cycle-Life Model for Graphite-LiFePO4 Cells,”
Power Sources, Vol. 196, pp. 3942-3948, 2011.
59
[42] T. Matsushima, “Deterioration Estimation of Lithium-Ion Cells in Direct Current
Power Supply Systems and Characteristics of 400-Ah Lithium-Ion Cells,” Power
Sources, Vol. 189, pp. 847-854, 2009.
[43] C. R. Gould, C. M. Bingham, “New Battery Model and State of Health
Determination Through Subspace Parameter Estimation and State Observer
Techniques,” IEEE Transaction of Vehicular Technology, Vol. 58, pp. 3905-3916,
2009.
[44] 陳鵬倫、邱奕超、涂家政,「鋰電池老化及健康狀態之估測」,中華民國第三
十三屆電力工程研討會,2012。
[45] A. A. Pesaran, G. H. Kim, and M. Keyser, “Integration Issues of Cells into Battery
Packs for Plug-in and Hybrid Electric Vehicles,” Presented at EVS-24
International Battery Conference in Stavanger, Norway, 2009.
[46] 林振華、林振富,充電式鋰離子電池-材料與應用,全華科技圖書股份有限公
司,2011。
[47] F. Wen. “Study on Basic Issues of the Li-Ion Battery Pack Management
Technology for Pure Electric Vehicles,” PhD Dissertaion, Beijing Jiaotong
University, 2010.
[48] M. Dubarry, N. Vuillaume, B. Y. Liaw, “From Single Cell Model to Battery Pack
Simulation for Li-Ion Batteries,” Power Sources, Vol. 186, pp. 550-507, 2008.
[49] J. C. Peng, Y. B. Chen, R. Eberhart, “Battery Pack State of Charge Estimator
Design Using Computational Intelligence Approaches,” in Proceedings of the
Fifteenth Annual Battery Conference on Applications and Advances in Long
Beach, USA, pp. 173-177, 2000.
[50] 伍時霖,「永磁同步馬達系統之可靠度評估及壽命預測」,國立台灣大學機械
60
工程學研究所碩士論文,2013。
[51] 可靠度工程與管理手冊,中華民國品質學會發行,2011。
[52] C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering,
Waveland Pr Inc Press, 1997.
[53] 楊毅祥,「以等效內阻法進行電池系統SOC 損耗修正」,國立台灣大學機械工
程學研究所碩士論文,2000。
[54] A. Iryn, R. William, E. Kiy, “Battery Open-Circuit Voltage Estimation by a
Method of Statistical Analysis,” Power Sources, Vol. 159, pp. 1484-1487, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊