(3.231.29.122) 您好!臺灣時間:2021/02/25 16:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宥延
研究生(外文):Yu-Yen Chen
論文名稱:利用殘餘應力之可彎植入式神經電刺激探針
論文名稱(外文):An Implantable Electrical Stimulation Probe with Bendable Split Anchors via Residual Stress
指導教授:施文彬
口試委員:游佳欣林啟萬胡毓忠
口試日期:2014-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:103
中文關鍵詞:神經電刺激植入式探針靜電紡絲生物相容性明膠纖維薄膜殘餘應力SU-8膜微創手術
外文關鍵詞:nerve electrical stimulationimplantable probeelectrospinning fibersbiocompatibilitygelatin fibrous membraneresidual stressSU-8 filmminimally invasive surgery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
相關研究文獻顯示,一個人罹患下背痛的機率高達54%至80%,且統計結果指出自1990年起,治療下背痛的經費以每年7%的比例再增加。這些數據顯示下背痛治療的需求近幾年來是一直在增長的,下背痛可經由藥物的途徑達到治療的效果,但是藥物的治療有伴隨著許多副作用的風險,因此,有別於藥物治療的緩解下背痛的方法是一直在尋找並且改良的。
神經探針經由電訊號進行紀錄和刺激某些特定部位的大腦,此種類的治療方法已經被廣泛使用。研究結果顯示,在特定的神經組織進行電刺激會導致不同部位的反應。一般下背痛的臨床治療中,對神經進行一次性電刺激,其療效並非永久性,病人約每隔三到六個月就需再進行電刺激。因此,植入式的電刺激系統已經被開發並且用於不同的長期性的神經電刺激治療,目前有幾種疾病已經通過臨床的研究並廣泛被使用,如帕金森氏症及坐骨神經痛。然而,目前多數的相關植入性手術多為開放性手術,微創手術相對於開放性手術所產生的手術傷口較小,有利於術後恢復,因此,近年來,用於針對微創手術所設計的神經電刺激探針已開始被研究。本研究針對微創手術開發出一款植入性雙極電極電刺激探針,此探針主要包含了一層軟性電路板基板和一層SU-8膜,利用SU-8膜內的殘餘應力,該探針將會變形為似鑷子形狀的機構,以便於夾住目標神經。和先前的研究相比此固定的機制由二為平面演進到三維的固定方法。為了增加殘餘應力的單軸向性使探針具有較大的變形量,SU-8膜被設計有條紋結構,此外,利用靜電紡絲技術製成的明膠纖維薄膜將固定於探針的分岔處當作細胞支架使用,以達到加速傷口癒合,減少免疫反應和確保長期固定的功能。
明膠是由動物體內取得,是一種天然的高分子,材料本身有很好的生物相容性,也很適合某些特定細胞生長,被廣泛使用生醫領域的可植入性材料及細胞養殖上。纖維母細胞被用於細胞培養的實驗中,實驗結果顯示細胞可以很好的貼附在明膠纖維薄膜上,隨著培養天數的增加細胞數量有增加的情況。明膠纖維薄膜的細胞支架被證明有良好的生物相容性和機械性質,有利於細胞生長。此細胞支架被證明可以達到速傷口癒合,減少免疫反應等目的。
為了計算SU-8膜內的殘餘應力,傳統的Stoney’s公式將會被修正為適用於厚膜的情況,使用奈米壓痕技術量測SU-8膜和軟性電路基板的楊氏模數,使用SEM拍攝探針的側面用於量測SU-8膜厚度,而探針的變形量也是使用拍攝的方法進行量測的到。量測的到的SU-8膜和軟性電路板的楊氏模數分別為4.7-5.2 GPa和1.37 GPa。利用修正後的Stoney’s公式,SU-8膜內的殘餘應力可以被計算。實驗結果顯示,薄膜厚度和變形的曲率半徑並沒有一個明顯的關係。但是隨著薄膜厚度的增加,膜內的殘餘應力有上升的趨勢。由於在相同的製程步驟下膜內的殘餘應力會隨著薄膜厚度而改變,因此不能直接利用控制SU-8膜厚來達到控制探針變形量的效果。
探針的固定強度實驗結果中,探針的抗拉強度和其變形程度有一定的關係,和二維的平面探針相比,變形後的三維探針的固定性有明顯的增加。在此拉伸實驗中,將得到的探針的最大的抗拉力進行無因次化,並定義其為探針的抗拉強度。平面探針的最大抗拉力是0.299N,抗拉強度為0.198。變形後高度為10.29 mm 和14.24 mm的探針最大抗拉力分別為0.369 N 和0.398 N,而抗拉強度分別為0.24及0.26,和原平面探針相比抗拉強度分別上升了22.7%和31.3%。但是探針的變形量和抗拉強度並不是單純的正相關,實驗結果顯示,變形高度在13 mm和14 mm之間的探針平均可達到的抗拉強度是最好的,平均的抗拉強度為0.258。
另外,在探針的植入過程中,可以藉由量測探針的阻抗來判定探針是否順利碰觸到目標神經,實驗結果顯示,在低頻域下,探針植入後阻抗的變化比在高頻域明顯。因此,再利用阻抗進行探針偵測時低頻域是較好的選擇。


Literature statistics showed that the chance for a person to suffer from low back pain could be up to 54%~80%, and the annual cost on low back pain treatment has 7% annual growth since 1990. These statistics indicate that the needs for low back pain treatment have been increasing. Low back pain can be effectively relieved by pharmacological treatment. However, this type of treatment may cause lots of side effects. Thus, researchers have been seeking other ways for low back pain relief.
Neural probes have been widely used for recording and stimulating the specific sites of brains through electrical signal. Studies showed that electrical stimulation on specific neural tissues can evoke different reactions. For clinical low back pain treatment, the target nerve is treated with one-time stimulation, whose therapeutic effect is not permanent. Patients will need the stimulation surgery every 3 to 6 months to suppress the pain. Thus, implantable stimulation systems have been developed for different long-term neural electrical stimulation treatments, such as for Parkinson’s disease and sciatica. However, since implanting surgeries are often invasive, many minimally invasive surgical procedures are conducted nowadays, in order to reduce the size of incisions.
This paper presents a bipolar electrode probe used for implantable nerve stimulation treatments in minimally invasive surgeries. The probe is composed of a flexible printed circuit substrate and a fabricated SU-8 layer. This probe features a tweezer-like mechanism caused by residual stress in SU-8 film, which will fix the probe to the target nerve. There are stripes on the SU-8 film so that the residual stress nets in a single direction and forms a curve. In addition, a film of gelatin nanofibers, produced via electrospinning, covers the fixed ends of the probe anchors for cell growth to ensure long-term fixation in the body.
In the experiment of the cell culture, the gelatin fibrous membrane is proven to have good biocompatibility and mechanical properties for cell culture. Adhesion and growth of 3T3 fibroblast cells on the membrane is effective. Thus, this cell scaffold attached on the probe should reach expected efficacy.
A modified Stoney’s formula is established for estimating residual stress in the SU-8 film. The SU-8 thickness was measured with a scanning electron microscopy (SEM); the radius of curve was computed by trigonometry, and the Young’s moduli of SU-8 and flexible printed circuit (FPC) were determined by a nanoindenter. The thicknesses and radii are variable, while the Young’s moduli for FPC and SU-8 were mostly constant at 1.37 GPa and 4.7-5.2 GPa, respectively. With the revised Stoney’s formula, the residual stress could then be calculated. The results of experiment show that there are no obvious relationship between the thickness of the film and the radius of curvature. The residual stress of the SU-8 film is affected by the film thickness. Thus, the deformation of bendable split anchor in the probe cannot be controlled by SU-8 film thickness, but the residual of the SU-8 film increase with increasing film thickness.
In the experiment of holding strength test, the breaking force is dominated by the deformation of the bendable split anchors in the probe. The deformation of the bendable split anchor has an optimum holding strength. The experiment results show that breaking forces of the curved probe are higher than plane probe. Breaking force of the plane probe is 0.299 N, and normalized breaking force is 0.198. The probes with the curvature heights of 10.29 mm and 14.24 mm have the breaking forces of 0.368 N and 0.398 N, respectively; the normalized breaking force is 0.24 and 0.26, which are 22.7% and 31.3% higher than that of the plane probe, respectively. The probes with curvature heights between 13 mm and 14 mm have maximum average breaking force about 0.258. In the implanting process, the impedance of the probe should be measured using low-frequency signal in order to determine whether the probe touches the target nerve.



口試委員會審定書 #
致謝 i
中文摘要 ii
ABSTRACT iv
SYMBOL TABLE vii
CONTENTS xii
LIST OF FIGURES xv
LIST OF TABLES xx
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.1.1 Low back pain and spinal cord stimulation treatment 1
1.1.2 Implantable stimulation system 2
1.2 MEMS stimulation electrode and anchoring 4
1.2.1 Bipolar vs. monopolar configuration 4
1.2.2 Significance and methods of electrode anchoring 5
1.3 Literature review of implantable stimulation electrode/probe 5
1.4 Thesis organization 9
Chapter 2 Probe design and fabrication 11
2.1 Working principle of the probe adhesion 11
2.2 Probe design 14
2.2.1 Probe structure 14
2.2.2 Flexible printed circuit (FPC) substrate design and structure 16
2.3 Probe fabrication 20
Chapter 3 Residual stress in thin films 25
3.1 Introduction of residual stress 25
3.1.1 Overview of residual stress 25
3.1.2 Residual stress in SU-8 film 28
3.2 Modified Stoney’s formula which is applied to thick film 31
3.2.1 Original Stoney’s formula 31
3.2.2 Modified Stoney’s formula 32
3.3 Relationship between residual stress and film thickness 37
Chapter 4 Cell culture of electrospun gelatin fibers 43
4.1 Introduction of electrospinning technique 43
4.1.1 Principle of electrospinning technique 43
4.1.2 Development of electrospinning technique 45
4.2 Application of gelatin fibers in biomedical engineering 48
4.3 Gelatin fibrous membrane 49
4.3.1 Materials 49
4.3.2 Fabrication of gelatin fiberous membrane 49
4.4 Measurement of mechanical strength 53
4.4.1 Mechanical property of polymers 53
4.4.2 Experiment setup and process 55
4.4.3 Test results and discussion 57
Chapter 5 Experiment of Cell culture 59
5.1 Cell culture 59
5.1.1 Materials 59
5.1.2 Solution formula 59
5.1.3 Method 60
5.2 Cell morphology observation by fluorescence staining 61
5.2.1 Materials 61
5.2.2 Fluorescence staining 61
5.3 Cell morphology observation by SEM 63
Chapter 6 Probe test 65
6.1 Structure holding strength test 65
6.1.1 Experiment setup and process 65
6.1.2 Test results and discussion 67
6.2 Impedance test 76
6.2.1 Experimental setup and process 76
6.2.2 Model of equivalent circuit 78
6.2.3 Test results and discussion 82
Chapter 7 Conclusion and future work 87
7.1 Conclusion 87
7.2 Future work 90
REFERENCE 92



[1]A. M. Elliott, B. H. Smith, P. C. Hannaford, W. C. Smith and W. A. Chambers, “The course of chronic pain in the community: results of a 4-year follow-up study,” Pain, Vol. 99, No. 1, 2002, pp. 299-307.
[2]C. G. Helmick, D. T. Felson, R. C. Lawrence, S. Gabriel, R. Hirsch, C. K. Kwoh, M. H. Liang, H. M. Kremers, M. D. Mayes and P. A. Merkel, “Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: Part I,” Arthritis &; Rheumatism, Vol. 58, No. 1, 2008, pp. 15-25.
[3]P. C&;ocirc;t&;eacute;, J. D. Cassidy and L. Carroll, “The Saskatchewan health and back pain survey: the prevalence of neck pain and related disability in Saskatchewan adults,” Spine, Vol. 23, No. 15, 1998, pp. 1689-1698.
[4]H. B. Bressler, W. J. Keyes, P. A. Rochon and E. Badley, “The prevalence of low back pain in the elderly: a systematic review of the literature,” Spine, Vol. 24, No. 17, 1999, pp. 1813.
[5]F. Cecchi, P. Debolini, R. M. Lova, C. Macchi, S. Bandinelli, B. Bartali, F. Lauretani, E. Benvenuti, G. Hicks and L. Ferrucci, “Epidemiology of back pain in a representative cohort of Italian persons 65 years of age and older: the InCHIANTI study,” Spine, Vol. 31, No. 10, 2006, pp. 1149.
[6]M. Mortimer, G. Pernold and C. Wiktorin, “Low back pain in a general population. Natural course and influence of physical exercise–a 5-year follow-up of the Musculoskeletal Intervention Center-Norrt&;auml;lje Study,” Spine, Vol. 31, No. 26, 2006, pp. 3045-3051.
[7]H. R. Guo, S. Tanaka, W. E. Halperin and L. L. Cameron, “Back pain prevalence in US industry and estimates of lost workdays,” American Journal of Public Health, Vol. 89, No. 7, 1999, pp. 1029-1035.
[8]N. Attal, G. Cruccu, R. Baron, M. Haanp&;auml;&;auml;, P. Hansson, T. S. Jensen and T. Nurmikko, “EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision,” European Journal of Neurology, Vol. 17, No. 9, 2010, pp. 1113-e88
[9]N. B. Finnerup, S. H. Sindrup and T. S. Jensen, “The evidence for pharmacological treatment of neuropathic pain,” Pain, Vol. 150, No. 3, 2010, pp. 573-581.
[10]E. J. Tehovnik, “Electrical stimulation of neural tissue to evoke behavioral responses,” Journal of Neuroscience Methods, Vol. 65, No. 1, 1996, pp. 1-17.
[11]R. Fuentes, P. Petersson, W. B. Siesser, M. G. Caron and M. A. Nicolelis, “Spinal cord stimulation restores locomotion in animal models of Parkinson''s disease,” Science, Vol. 323, No. 5921, 2009, pp. 1578-1582.
[12]J. W. M. Geurts, L. Lou, C. A. Gauci, P. Newnham and R. M. A. W. Van Wijk, “Radiofrequency treatments in low back pain,” Pain Practice, Vol. 2, No. 3, 2002, pp. 226-234.
[13]D. Byrd and S. Mackey, “Pulsed radiofrequency for chronic pain,” Current Pain and Headache Reports, Vol. 12, No. 1, 2008, pp. 37-41.
[14]F. Tendick, S. S. Sastry, R. S. Fearing and M. Cohn, “Applications of micromechatronics in minimally invasive surgery,” Mechatronics, IEEE/ASME Transactions on, Vol. 3, No. 1, 1998, pp. 34-42.
[15]F. Wu, M. Im and E. Yoon, “A flexible fish-bone-shaped neural probe strengthened by biodegradable silk coating for enhanced biocompatibility,” Proceedings Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011, pp. 966-969.
[16]F. Wu, L. Tien, F. Chen, D. Kaplan, J. Berke and E. Yoon, “A multi-shank silk-backed parylene neural probe for reliable chronic recording,” Proceedings Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS &; EUROSENSORS XXVII), 2013, pp. 888-891.
[17]R. K. Shepherd, S. Hatsushika and G. M. Clark, “Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation,” Hearing Research, Vol. 66, No. 1, 1993, pp. 108-120.
[18]T. S. Karande, J. L. Ong and C. M. Agrawal, “Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing,” Annals of Biomedical Engineering, Vol. 32, No. 12, 2004, pp. 1728-1743.
[19]K. Van Boxem, M. Van Eerd, T. Brinkhuize, J. Patijn, M. Van Kleef and J. Van Zundert, “Radiofrequency and pulsed radiofrequency treatment of chronic pain syndromes: the available evidence,” Pain Practice, Vol. 8, No. 5, 2008, pp. 385-393.
[20]C. T. Wu, “Development of implantable bipolar neural stimulation electrode for low back pain treatment,” Master Thesis, National Taiwan University, 2012.
[21]A. Cahana, J. Van Zundert, L. Macrea, M. Van Kleef and M. Sluijter, “Pulsed radiofrequency: current clinical and biological literature available,” Pain Medicine, Vol. 7, No. 5, 2006, pp. 411-423.
[22]M. Sluijter and G. Racz, “Technical aspects of radiofrequency,” Pain Practice, Vol. 2, No. 3, 2002, pp. 195-200.
[23]D. Shatin, K. Mullett and G. Hults, “Totally implantable spinal cord stimulation for chronic pain: Design and efficacy,” Pacing and Clinical Electrophysiology, Vol. 9, No. 4, 1986, pp. 577-583.
[24]B. S. Nashold, J. Goldner, J. Mullen and D. Bright, “Long-term pain control by direct peripheral-nerve stimulation,” The Journal of Bone &; Joint Surgery, Vol. 64, No. 1, 1982, pp. 1-10.
[25]Y. Shimada, R. Davis, T. Matsunaga, A. Misawa, T. Aizawa, E. Itoi, Y. Zilberman, G. Cosendai and A. M. Ripley, “Electrical stimulation using implantable radiofrequency microstimulators to relieve pain associated with shoulder subluxation in chronic hemiplegic stroke,” Neuromodulation: Technology at the Neural Interface, Vol. 9, No. 3, 2006, pp. 234-238.
[26]E. J. Tehovnik, “Electrical stimulation of neural tissue to evoke behavioral responses,” Journal of Neuroscience Methods, Vol. 65, No. 1, 1996, pp. 1-17.
[27]W. M. Chardack, A. A. Gage and W. Greatbatch, “A transistorized, self-contained, implantable pacemaker for the long-term correction of complete heart block,” Surgery, Vol. 48, 1960, pp. 643-654.
[28]J. L. H. R. Bosch and J. Groen, “Sacral (S3) segmental nerve stimulation as a treatment for urge incontinence in patients with detrusor instability: results of chronic electrical stimulation using an implantable neural prosthesis,” The Journal of Urology, Vol. 154, No. 2, 1995, pp. 504-507.
[29]M. W. Keith, P. H. Peckham, G. B. Thrope, K. C. Stroh, B. Smith, J. R. Buckett, K. L. Kilgore and J. W. Jatich, “Implantable functional neuromuscular stimulation in the tetraplegic hand,” The Journal of Hand Surgery, Vol. 14, No. 3, 1989, pp. 524-530.
[30]B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, “A single-channel implantable microstimulator for functional neuromuscular stimulation,” IEEE T. Bio-med. Eng., vol. 44, pp. 909-920, 1997.
[31]B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” Biomedical Engineering, IEEE Transactions on, Vol. 45, No. 4, 1998, pp. 463-475.
[32]C. H. Chang, “Feasibility study of implantable pulsed-radiofrequency stimulator with verification on sciatica rat model,” Master Thesis, National Taiwan University, 2009.
[33]R. K. Shepherd, S. Hatsushika and G. M. Clark, “Electrical stimulation of the auditory nerve: the effect of electrode position on neural excitation,” Hearing Research, Vol. 66, No. 1, 1993, pp. 108-120.
[34]V. M. Renard and R. B. North, “Prevention of percutaneous electrode migration in spinal cord stimulation by a modification of the standard implantation technique,” Journal of Neurosurgery: Spine, Vol. 4, No. 4, 2006, pp. 300-303.
[35]A. Franzini, G. Messina, M. Leone and G. Broggi, “Occipital nerve stimulation (ONS). Surgical technique and prevention of late electrode migration,” Journal of Acta Neurochirurgica, Vol. 151, No. 7, 2009, pp. 861-865.
[36]J. Favre, J. M. Taha, T. Steel and K. J. Burchiel, “Anchoring of deep brain stimulation electrodes using a microplate: Technical note,” Journal of Neurosurgery, Vol. 85, No. 6, 1996, pp. 1181-1183.
[37]C. R. Bjarkam, R. L. Jorgensen, K. N. Jensen, N. A. Sunde and J.-C. H. S&;oslash;rensen, “Deep brain stimulation electrode anchoring using BioGlue (R), a protective electrode covering, and a titanium microplate,” Journal of Neuroscience Methods, Vol. 168, No. 1, 2008, pp. 151-155.
[38]A. Mahdavi, L. Ferreira, C. Sundback, J. W. Nichol, E. P. Chan, D. J. Carter, C. J. Bettinger, S. Patanavanich, L. Chignozha and E. Ben-Joseph, “A biodegradable and biocompatible gecko-inspired tissue adhesive,” Proceedings of the National Academy of Sciences, Vol. 105, No. 7, 2008, pp. 2307-2312.
[39]J. Duysens and R. Stein, “Reflexes induced by nerve stimulation in walking cats with implanted cuff electrodes,” Experimental Brain Research, Vol. 32, No. 2, 1978, pp. 213-224.
[40]G. G. Naples, J. T. Mortimer, A. Scheiner and J. D. Sweeney, “A spiral nerve cuff electrode for peripheral nerve stimulation,” Biomedical Engineering, IEEE Transactions on, Vol. 35, No. 11, 1988, pp. 905-916.
[41]W. M. Tsang, A. L. Stone, Z. N. Aldworth, J. G. Hildebrand, T. L. Daniel, A. I. Akinwande and J. Voldman, “Flexible split-ring electrode for insect flight biasing using multisite neural stimulation,” Biomedical Engineering, IEEE Transactions on, Vol. 57, No. 7, 2010, pp. 1757-1764.
[42]B. Franklin, “An account of the effects of electricity in paralytic cases. In a letter to john pringle, MDFRS from Benjamin Franklin, Esq; FRS,” Philosophical Transactions, 1757, pp. 481-483.
[43]M. HajjHassan, V. Chodavarapu and S. Musallam, “NeuroMEMS: neural probe microtechnologies,” Sensors, Vol. 8, No. 10, 2008, pp. 6704-6726.
[44]R. B. North, V. R. Recionos, F. J. Attenello, J. Shipley and D. M. Long “Prevention of percutaneous spinal cord stimulation electrode migration: a 15-year experience,” Neuromodulation: Technology at the Neural Interface, 2014
[45]X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “ A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” Journal of the Peripheral Nervous System, Vol. 10, No. 3, 2005, pp. 229-258
[46]L. A. Geddes and R. Roeder, “Criteria for the selection of materials for implanted electrodes,” Annals of Biomedical Engineering, Vol. 31, No. 7, 2003, pp. 879-890.
[47]G. Voskerician, M. S. Shive, R. S. Shawgo, H. Von Recum, J. M. Anderson, M. J. Cima and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials, Vol. 24, No. 11, 2003, pp. 1959-1967.
[48]S. H. Cho, H. M. Lu, L. Cauller, M. I. Romero-Ortega, J. B. Lee and G. A. Hughes, “Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers,” Sensors Journal, IEEE, Vol. 8, No. 11, 2008, pp. 1830-1836.
[49]J. W. Hutchinson, “Stresses and failure modes in thin films and multilayers,” Lecture Notes, 1996.
[50]F. C. Frank and J. H. Van der Merwe, “One-dimensional dislocations. I. Static theory,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 198, No. 1053, 1949, pp. 205-216.
[51]F. C. Frank and J. H. Van der Merwe, “One-dimensional dislocations. II. Misfitting monolayers and oriented overgrowth,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 198, No. 1053, 1949, pp. 216-225.
[52]M. F. Doerner and W. D. Nix, “Stresses and deformation processes in thin films on substrates,” Critical Reviews in Solid State and Material Sciences, Vol. 14, No. 3, 1988, pp. 225-268.
[53]H. Lorenz, M. Laudon and P. Renaud, “Mechanical characterization of a new high-aspect-ratio near UV-photoresist,” Microelectronic Engineering, Vol. 41, 1998, pp. 371-374.
[54]G. Gore, “On the properties of electro-deposited antimony,” Philosophical Transactions of the Royal Society of London, 1858, pp. 185-197.
[55]G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 82, No. 553, 1909, pp. 172-175.
[56]L. B. Freund, J. A. Floro and E. Chason, “Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations,” Applied Physics Letters, Vol. 74, No. 14, 1999, pp. 1987-1989.
[57]C. Y. Hui, H. D. Conway and Y. Y. Lin, “A reexamination of residual stresses in thin films and of the validity of Stoney’s estimate,” Journal of Electronic Packaging, Vol. 122, No. 3, 2000, pp. 267-273.
[58]H. Yu, O. Balogun, B. Li, T. W. Murray and X. Zhang, “Building embedded microchannels using a single layered SU-8, and determining Young''s modulus using a laser acoustic technique,” Journal of Micromechanics and Microengineering, Vol. 14, No. 11, 2004, pp. 1576.
[59]J. G. Kim and J. Yu, “Comparative study of residual stresses measurement methods on CVD diamond films,” Scripta Materialia, Vol. 39, No. 6, 1998, pp. 807-814.
[60]C. L. Liu and D. P. Tang, “Effect of diamond film''s thickness on thermal residual stress after considering the substrate''s plasticity,” Advanced Materials Research, Vol. 154, 2011, pp. 1199-1202.
[61]J. M. Deitzel, J. Kleinmeyer, D. E. A. Harris and N. Beck Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, Vol. 42, No. 1, 2001, pp. 261-272.
[62]X. D. H. R. Fang and D. H. Reneker, “DNA fibers by electrospinning,” Journal of Macromolecular Science, Part B: Physics, Vol. 36, No. 2, 1997, pp. 169-173.
[63]A. L. Yarin, S. Koombhongse and D. H. Reneker, “Taylor cone and jetting from liquid droplets in electrospinning of nanofibers,” Journal of Applied Physics, Vol. 90, No. 9, 2001, pp. 4836-4846.
[64]G. Taylor, “Electrically driven jets,” Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 313, No. 1515, 1969, pp. 453-475.
[65]S. H. Lee, S. M. Yun, S. J. Kim, S. J. Park and Y. S. Lee, “Characterization of nanoporous β-SiC fiber complex prepared by electrospinning and carbothermal reduction,” Research on Chemical Intermediates, Vol. 36, No. 6-7, 2010, pp. 731-742.
[66]L. Rayleigh, “XX. On the equilibrium of liquid conducting masses charged with electricity,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 14, No. 87, 1882, pp. 184-186.
[67]J. F. COOLEY, “Apparatus for electrically dispersing fluids,” U. S. Patent, No. 692631, 1902
[68]A. Formhals, “Process and apparatus for preparing artificial threads,” U. S. Patent, No. 1975504, 1934
[69]A. Formhals, “Method and apparatus for spinning,” U. S. Patent, No. 2160962, 1939
[70]A. Formhals, “Artificial thread and method of producing same,” U. S. Patent, No. 2187306, 1940
[71]A. Formhals, “Production of artificial fibers from fiber forming liquids,” U. S. Patent, No. 2323025, 1943
[72]A. Formhals, “Method and apparatus for spinning,” U. S. Patent, No. 2349950, 1944
[73]D. H. Reneker and I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology, Vol. 7, No. 3, 1996, pp. 216.
[74]G. Taylor, “Disintegration of water drops in an electric field,” Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 280, No. 1382, 1964, pp. 383-397.
[75]J. M. Deitzel, J. Kleinmeyer, D. E. A. Harris and N. C. Beck Tan, “The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, Vol. 42, No. 1, 2001, pp. 261-272.
[76]H. Fong and D. H. Reneker, “Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer,” Journal of Polymer Science Part B Polymer Physics, Vol. 37, No. 24, 1999, pp. 3488-3493.
[77]J. Doshi and D. H. Reneker, “Electrospinning process and applications of electrospun fibers,” Journal of Electrostatics, Vol. 35, No. 2, 1995, pp. 151-160.
[78]G. T. Kim, J. S. Lee, J. H. Shin, Y. C. Ahn, K. H. Jeong, C. M. Sung and J. K. Lee, “Effect of humidity on the microstructures of electrospun polystyrene nanofibers,” Microscopy and Microanalysis, Vol. 10, No. S02, 2004, pp. 554-555.
[79]Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, Vol. 63, No. 15, 2003, pp. 2223-2253.
[80]K. Kawai, S. Suzuki, Y. Tabata, Y. Ikada and Y. Nishimura, “Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis,” Biomaterials, Vol. 21, No. 5, 2000, pp. 489-499.
[81]N. Choktaweesap, K. Arayanarakul, D. Aht-Ong, C. Meechaisue and P. Supaphol, “Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters,” Polymer, Vol. 39, No. 6, 2007, pp. 622-631.
[82]Z. M. Huang, Y. Z. Zhang, S. Ramakrishna and C. T. Lim, “Electrospinning and mechanical characterization of gelatin nanofibers,” Polymer, Vol. 45, No. 15, 2004, pp. 5361-5368.
[83]Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna and Z. M. Huang, “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 72, No. 1, 2005, pp. 156-165.
[84]S. C. Wu, W. H. Chang, G. C. Dong, K. Y. Chen, Y. S. Chen and C. H. Yao, “Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds,” Journal of Bioactive and Compatible Polymers, Vol. 26, No. 6, 2011, pp. 565-577.
[85]R. F. Landel and L. E. Nielsen, “Mechanical properties of polymers and composites,” CRC Press, 1993.
[86]Y. Z. Zhang, J. Venugopal, Z. M. Huang, C. T. Lim and S. Ramakrishna, “Crosslinking of the electrospun gelatin nanofibers,” Polymer, Vol. 47, No. 8, 2006, pp. 2911-2917.
[87]K. H. Lee, H. Y. Kim, Y. J. Ryu, K. W. Kim and S. W. Choi, “Mechanical behavior of electrospun fiber mats of poly (vinyl chloride)/polyurethane polyblends,” Journal of Polymer Science Part B: Polymer Physics, Vol. 41, No. 11, 2003, pp. 1256-1262.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔