(3.237.97.64) 您好!臺灣時間:2021/03/04 14:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何凱萍
研究生(外文):Kai-Ping Ho
論文名稱:應用於複合動力車之高功率密度永磁同步馬達設計方法
論文名稱(外文):Design Method of High Power Density Permanent Magnet Synchronous Motor for HEV
指導教授:鄭榮和
指導教授(外文):Jung-Ho Cheng
口試委員:李綱呂百修
口試委員(外文):Kang LiPai-Hsiu Lu
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:111
中文關鍵詞:功率密度永磁電機繞組設計d、q軸電感電機設計流程
外文關鍵詞:power densitypermanent magnet synchronous motorwinding designd-q axis inductancemotor design process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:569
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
本論文以提升複合動力車用100kW驅動馬達的功率密度為研究主軸,建立一套三步驟的轉子優化流程,包含磁石夾角優化、極弧係數優化、磁障設計優化。優化過程中同時探討磁極間空氣槽影響、磁石間隔磁槽影響、d、q軸電感差值變化、反電動勢諧波影響與抗退磁的能力。使用本研究建立的轉子優化流程,能使一初始的永磁電機設計,在不更動電機大多數幾何尺寸下,得到功率密度的提升。而在永磁電機中依繞組設計不同又可分為集中式繞組與分佈式繞組,選擇不同型式繞組其電機特性就有很大的不同,因此本研究針對兩種不同繞組電機,分別進行設計並使用此三步驟轉子優化流程,比較兩者功率密度增加的幅度差異,並得到兩種電機優化後的性能與特性差異性。最後,透過本研究建立的功率密度提升流程,可得到功率密度最大化的馬達優化設計。

The objective of this study is to enhance the power density of 100 kW traction motor for HEV. In this study presents a three steps rotor optimization process including magnet arrangement angle optimization, pole embrace optimization and flux barrier design. Through this process can enhance saliency ratio, reduce back emf harmonics and reduce demagnization area. In this study also compare the additional barrier between poles or magnets would influence the motor performance. Using this rotor optimization process can improve the power density of an original motor without changing too many motor design parameters. But in motor design, the winding type will influence motor’s properties a lot. This study compares the difference between FSCW motor and ISDW motor using the three steps rotor optimization process. Finally get a motor design with high power density and high performance for HEV.

致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
第一章:緒論 1
1.1 前言 1
1.2 研究背景與動機 4
1.3 研究方法與論文架構 5
1.4 使用軟體簡介 7
1.4.1 Maxwell Rmxprt/2D 7
1.4.2 Abuqus 7
1.4.3 CATIA 8
第二章:理論背景與文獻回顧 9
2.1 永磁同步馬達理論背景 9
2.1.1 磁場與等效磁路介紹 9
2.1.2 磁性材料特性介紹 11
2.1.3 馬達的損失與效率 15
2.2 文獻回顧 17
2.2.1 現今驅動馬達研究方向探討 17
2.2.2 繞組型式比較 23
2.2.3 永磁馬達槽極數比較 27
2.2.4 磁石擺放型式比較 30
2.2.5 轉子形狀比較 32
2.2.6 小結 33
第三章:100 KW集中繞組驅動馬達設計 35
3.1 設計目標與限制 36
3.1.1 EVX4複合動力系統介紹 36
3.1.2 100kW驅動馬達規格展開 38
3.2 初版馬達設計概念 40
3.3 初版馬達分析過程與結果 44
3.3.1 模型建立 45
3.3.2 激勵源設定方法 46
3.3.3 分析結果 48
3.4 V型磁石擺放優化設計 50
3.4.1 轉子模型簡化與參數位置定義 50
3.4.2 磁石夾角敏感度分析 53
3.4.3 極弧係數敏感度分析 59
3.4.4 磁障設計 62
3.4.5 結果比較 68
3.5 小結 69
第四章:100 KW分佈繞組驅動馬達設計 71
4.1 槽極比選擇 71
4.2 定子參數設計 76
4.3 轉子參數設計 78
4.3.1 磁石夾角敏感度分析 79
4.3.2 極弧係數敏感度分析 80
4.3.3 磁障設計 82
4.3.4 設計結果 85
4.4 小結 86
第五章:高功率密度馬達設計結果 88
5.1 集中繞組馬達與分佈繞組馬達設計結果比較 88
5.2 設計總結 93
第六章:結構強度分析與退磁分析 96
6.1 轉子應力分析 97
6.1.1 材料性質與邊界條件設定 97
6.1.2 結果討論 99
6.2 磁石退磁分析 102
6.2.1 分析方法 102
6.2.2 結果討論 103
第七章:結論與未來方向 105
7.1 研究成果 105
7.2 未來趨勢與改進方向 106
參考文獻 107


[1]ICCT, "Global Comparison of Light-Duty Vehicle Fuel Economy/GHG Emissions Standards," 2012.
[2]複合動力系統資料, Available:
http://www.toyotageorgetown.com/hybrid/ths2.asp.
[3]D. Hanselman, "Brushless Permanent Magnet Motor Design,"U.S.A:Cranston, 2003.
[4]磁滯曲線資料, Available:
http://www.electronics-tutorials.ws/electromagnetism/magnetic-hysteresis.html.
[5]R. R. Fessler and M. Olszewski, "Assessment of motor technologies for traction drives of hybrid and electric vehicles," ORNL/TM-2011/73, Mar. 2011.
[6]S. Abe and M. Murata, "Development of IMA Motor for 2006 Civic Hybrid," SAE Technical Paper 2006-01-1505, 2006.
[7]Z. Q. Zhu and D. Howe, "Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles," Proceedings of the IEEE , vol.95, no.4, pp.746,765, April 2007.
[8]Z. Peng and S. S. Williamson, "Recent status and future prospects of integrated starter-generator based hybrid electric vehicles," Vehicle Power and Propulsion Conference, 2008. VPPC ''08. IEEE , pp.1,8, 3-5 Sept. 2008.
[9]M. Obata, S. Morimoto, M. Sanada, and Y. Inoue, "Performance of PMASynRM with Ferrite Magnets for EV/HEV Applications Considering Productivity," Industry Applications, Transactions on IEEE, no.99, pp.1,1, Dec.2013.
[10]H. Murakami, Y. Honda, Y. Sadanaga, Y. Ikkai, S. Morimoto and Y. Takeda, "Optimum design of highly efficient magnet assisted reluctance motor," Industry Applications Conference, 2001. Thirty-Sixth IAS Annual Meeting. Conference Record of the 2001 IEEE , vol.4, no., pp.2296,2301 vol.4, Sept. 30 2001-Oct. 4 2001.
[11]Ooi, S.; Morimoto, S.; Sanada, M.; Inoue, Y., "Performance evaluation of a high power density PMASynRM with ferrite magnets," Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, pp.4195,4200, 17-22 Sept. 2011.
[12]K. Sung-Il, C. Jinwoo, P. Sunghyuk, P. Taesang and L. Seongtaek, "Characteristics comparison of a conventional and modified spoke-type ferrite magnet motor for traction drives of low-speed electric vehicles," Energy Conversion Congress and Exposition (ECCE), 2012 IEEE, pp.3048,3054, 15-20 Sept. 2012.
[13]W. Kakihara, M. Takemoto and S. Ogasawara, "Rotor structure in 50 kW spoke-type interior permanent magnet synchronous motor with ferrite permanent magnets for automotive applications," Energy Conversion Congress and Exposition (ECCE), 2013 IEEE , pp.606,613, 15-19 Sept. 2013.
[14]陳逸萱, "增程式永磁發電機之磁石減量研究," 國立台灣大學機械所碩士論文, 2012.
[15]K. Hsueh, J. Cheng, Y. Chen, and A. Lu, "Study of Different Arrangement of Magnets for the Purpose of Reducing Magnet Usage in Designing an Integrated Starter/Generator for Hybrid Vehicles," SAE Technical Paper 2013-32-9120, 2013.
[16]K. Jang-Mok and S. Seung-Ki, "Speed control of interior permanent magnet synchronous motor drive for the flux weakening operation," Industry Applications, Transactions on IEEE , vol.33, no.1, pp.43,48, Jan/Feb 1997.
[17]K. Cheol-Min, C. Gyu-Won, K. Gyu-Tak and S. Heung-Gyo, "The design of flux barrier for improvement of demagnetization endurance in BLDC Motor," Electrical Machines and Systems (ICEMS), 2013 International Conference, pp.1198,1201, 26-29 Oct. 2013.
[18]K. Imamura,M. Sanada,S. Morimoto and Y. Inoue, "Improvement of demagnetization by rotor structure of IPMSM with Dy-free rare-earth magnet," Electrical Machines and Systems (ICEMS), 2012 15th International Conference, pp.1,6, 21-24 Oct. 2012.
[19]Z. Azar, Z. Q. Zhu and G. Ombach, "Influence of Electric Loading and Magnetic Saturation on Cogging Torque, Back-EMF and Torque Ripple of PM Machines," Magnetics, Transactions on IEEE, vol.48, no.10, pp.2650,2658, Oct. 2012.
[20]K. Jeonghu, M. Seungjae and H. Jung-Pyo, "Optimal Stator Design of Interior Permanent Magnet Motor to Reduce Torque Ripple Using the Level Set Method," Magnetics, Transactions on IEEE, vol.46, no.6, pp.2108,2111, June 2010.
[21]W. Q. Chu and Z. Q. Zhu, "Investigation of Torque Ripples in Permanent Magnet Synchronous Machines With Skewing," Magnetics, Transactions on IEEE, vol.49, no.3, pp.1211,1220, March 2013.
[22]S. Jae-Hong, J. Dae-Sung, K. Sang-Jin, L. Sang-Han, P. Hyung-Kun, K. Do-Hyun, P. Seung-Yong, K. Soon-O, K. Yong-Ho and H. Jung-Pyo, "Power density improvement design of the traction motor for the hybrid electric vehicle," Telecommunications Energy Conference, 2009. INTELEC 2009. 31st International , pp.1,4, 18-22 Oct. 2009.
[23]N. Bianchi, S. Bolognani and P. Frare, "Design criteria for high-efficiency SPM synchronous motors," Energy Conversion, Transactions on IEEE, vol.21, no.2, pp.396,404, June 2006.
[24]L. Hyung-Woo, P. Chan-Bae and L. Byung-Song, "Performance comparison of the railway traction IPM motors between concentrated winding and distributed winding," Transportation Electrification Conference and Expo (ITEC), 2012 IEEE , pp.1,4, 18-20 June 2012.
[25]L. Chong, R. Dutta, N. Q. Dai, M. F. Rahman and H. Lovatt, "Comparison of concentrated and distributed windings in an IPM machine for field weakening applications," Universities Power Engineering Conference (AUPEC), 2010 20th Australasian , pp.1,5, 5-8 Dec. 2010.
[26]J. K. Tangudu and T. M. Jahns, "Comparison of interior PM machines with concentrated and distributed stator windings for traction applications," Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE ,pp.1,8, 6-9 Sept. 2011.
[27]通用汽車驅動馬達資料, Available:
http://www4.eere.energy.gov/vehiclesandfuels/resources/merit-review/sites/default/files/ape00a_rogers_2013_o.pdf.
[28]C. Wei, “Multi-set rectangular copper hairpin windings for electric machines” U.S. Patent No. 7034428, 2005.
[29]J. Dae-Sung, K. Yong-Ho, L. Un-Ho, L. Hyeoun-Dong, "Optimum Design of the Electric Vehicle Traction Motor Using the Hairpin Winding," Vehicular Technology Conference (VTC Spring), 2012 IEEE 75th , pp.1,4, 6-9 May 2012.
[30]電流集膚效應資料, Available:
http://zh.wikipedia.org/wiki/%E9%9B%86%E8%86%9A%E6%95%88%E6%87%89.
[31]M. Morimoto, "Rare earth free, traction motor for electric vehicle," Electric Vehicle Conference (IEVC), 2012 IEEE International ,pp.1,4, 4-8 March 2012.
[32]J. Goss, D. Staton, R. Wrobel and P. Mellor, "Brushless AC interior-permanent magnet motor design: Comparison of slot/pole combinations and distributed vs. concentrated windings," Energy Conversion Congress and Exposition (ECCE), 2013 IEEE ,pp.1213,1219, 15-19 Sept. 2013.
[33]F. Magnussen and H. Lendenmann, "Parasitic effects in PM machines with concentrated windings," Industry Applications Conference, 2005. Fourtieth IAS Annual Meeting. Conference Record of the 2005 , vol.2, pp.1044,1049 Vol. 2, 2-6 Oct. 2005.
[34]P. B. Reddy, A. M. El-Refaie, H. Kum-Kang, J. K. Tangudu, and T. M. Jahns, "Comparison of Interior and Surface PM Machines Equipped With Fractional-Slot Concentrated Windings for Hybrid Traction Applications," Energy Conversion, Transactions on IEEE, Vol. 27, pp. 593-602, 2012.
[35]C.W. Ayers, C.L. Commer, J. S. Hsu, "Report on Toyota/Prius Motor Design and Manufacturing Assessment," Oak Ridge National Laboratory, 2004.
[36]K. Li, et al, "Optimal magnet shape to improve torque characteristics of interior permanent magnet synchronous motor," Applied Physis, 2005.
[37]G. Lusu and L. Parsa, "Effects of magnet shape on torque characteristics of Interior Permanent Magnet machines," in Electric Ship Technologies Symposium, 2009. ESTS 2009, IEEE, pp. 93-97, 2009.
[38]H. Kyu-Yun, R. Sang-Bong, Y. Byoung-Yull and K. Byung-Il, "Rotor Pole Design in Spoke-Type Brushless DC Motor by Response Surface Method," Magnetics, Transactions on IEEE, vol.43, no.4, pp.1833,1836, April 2007.
[39]J. Yong, Z. Yang and M. Krishnamurthy, "Optimal design considerations for interior permanent magnet motor for a range-extended electric vehicle," Transportation Electrification Conference and Expo (ITEC), 2013 IEEE , pp.1,6, 16-19 June 2013.
[40]T. A. Burress, S. L. Campbell, C. L. Coomer, C. W. Ayers, A. A. Wereszczak, J. P. Cunningham, L. D. Marlino, L. E. Seiber, H. T. Lin, "Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System", ORNL/TM-2010/253, 2010.
[41]K. Yamazaki and Y. Fukushima, "Effect of Eddy-Current Loss Reduction by Magnet Segmentation in Synchronous Motors With Concentrated Windings," Industry Applications, Transactions on IEEE, vol.47, no.2, pp.779,788, March-April 2011.
[42]K. Yamazaki, Y. Kanou, Y. Fukushima, S. Ohki, A. Nezu, T. Ikemi and R. Mizokami, "Reduction of Magnet Eddy-Current Loss in Interior Permanent-Magnet Motors With Concentrated Windings," Industry Applications, Transactions on IEEE, vol.46, no.6, pp.2434,2441, Nov.-Dec. 2010.
[43]TJE. Miller, Design of Brushless Permanent-Magnet Motors. Magna Publishing, OH and Clarendon Press, Oxford, 1994.
[44]K. Gyu-Hong, H. Jin, N. Hyuk, H. Jung-Pyo, and K. Gyu-Tak, "Analysis of irreversible magnet demagnetization in line-start motors based on the finite-element method," Magnetics, IEEE Transactions on, vol. 39, pp. 1488-1491, 2003.
[45]新日鐵電磁鋼板型錄, Available:
http://www.nssmc.com/product/catalog_download/pdf/D003jec.pdf.
[46]J. K. Tangudu, T. M. Jahns, and T. P. Bohn, "Design, analysis and loss minimization of a fractional-slot concentrated winding IPM machine for traction applications," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, pp. 2236-2243, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔