(44.192.112.123) 您好!臺灣時間:2021/03/08 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝孟洋
研究生(外文):Meng-Yang Hsieh
論文名稱:靜電式液氣排流能量擷取器
論文名稱(外文):Electrostatic Power Harvester using a Liquid-Gas Flow Array
指導教授:張培仁
口試委員:吳文中
口試日期:2014-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:98
中文關鍵詞:微機電能量擷取靜電微流道兩相流T型管
外文關鍵詞:MEMSPower HarvestingElectrostaticsMicro-channelLiquid-gas flowPDMST-shaped
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於生態環境的監測、災害預警系統的構建及智慧型生活空間的發展,多點分佈無線監測網路的佈置已成必然。然而,成熟的無線通訊技術和低功率消耗電路的發展,使得感測器的用電量大幅降低。且許多微機電系統結構與遠紅外線裝置因有電池更換不易、使用壽命不長等問題。故期望能夠將這些裝置整合為自給供電裝置。
本論文為使用微機電製程技術研製一能將環境機械能轉換為電能之靜電式微型能量擷取器,此擷取器由高250μm的微流道並且在流道中有排列的液氣流所組成。本靜電式能量擷取器利用機械能轉換成電能,所以前端設計一可以產生整齊排列液氣流之T型管結構,並且考量到需要置入鞋子中,所以必須要是可饒式的基板,所以在這邊採用PDMS當作上下基板,在流道中間鍍上電極來作為平行板電容之應用,加上後端有一大型可壓式腔體作為人走路時機械力量所壓。實驗量測結果得此能量擷取器單根電極在電極面積為2cm×1mm時、外加電壓為5V、最佳阻抗為120k&;#8486;時,有最佳平均輸出功率2.78μW輸出,多根電極在流速在4mm/sec時有良好的排列情形,液氣流長度大約在5-7mm,平均輸出功率為5.52pW,隨著流速增加功率也會增加,平均功率也會提高。而平行板電容靜電式能量擷取之理論推導,亦展現在本論文研究中。


Enabling technologies for wireless sensor networks have gained considerable attention in research communities over the past few years. With the development of the low powered small wireless electronic devices, it is highly desirable, even necessary in certain situations, for wireless sensor nodes to be self-powered.
In this work, Electrostatic power harvester using a liquid-gas flow array has been developed. The harvester is combined with 250μm micro-channel and arranged liquid-gas flow in channel. The Electrostatic power harvester converts mechanical energy to electrical energy. The front-end design of T-shaped structure can generate liquid-gas flow, and considering the need to put into shoes, the substrate shall be flexible. Using PDMS as substrate, patterning electrode in micro-channel as parallel plate capacitor, the back-end design of a chamber can be pressed by mechanical force.
With the present power harvester, average power 2.78μW is obtained at bias voltage 5V, resistance 120kΩ, single electrode area 2cm×1mm. Multi-electrode harvester has gas and liquid depth 5-7mm at velocity 4mm/sec, and produce average power 5.52pW. Multi-electrode harvester gained more power as velocity increasing. The theory of the parallel plate capacitor power harvester model is also presented.


誌謝 I
摘要 III
Abstract V
符號對照表VII
目錄 VIII
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1.1研究動機 1
1.2 論文架構 5
第二章 能量擷取器之文獻回顧 6
2.1靜電式能量擷取器文獻回顧 6
2.2壓電式及電磁式能量擷取文獻回顧 22
2.3三種能量擷取方式比較 24
第三章 靜電式可變電容理論模型 26
3.1介電質改變之電容模型效果評估 26
3.2 介電質改變之電容模型串聯電容計算 30
3.3介電質改變之電容模型無因次化 33
3.4 影響因子Z的極值計算 34
3.5 功率預估計算 36
3.6介電質改變之電容模型討論 37
第四章 靜電式液氣排流能量擷取器之結構設計 43
4.1 能量擷取器之基板結構設計 43
4.2能量擷取器之上下基板和擋罩(shadow mask)設計 45
4.3流道結構設計 47
4.4能量擷取器之整體設計 48
第五章 靜電式液氣排流能量擷取器之製作 50
5.1 製程流程圖 50
5.2實驗設備介紹 52
5.3實驗流程 54
5.3.1雷射切割 54
5.3.2電子束蒸鍍法鍍金 59
5.3.3 聚二甲基矽氧烷(PDMS)流道製作 66
5.3.4氧電漿之聚二甲基矽氧烷接合及流道穿孔 71
第六章 實驗結果與討論 77
6.1 量測實驗結果 77
6.1.1單根電極測量 77
6.1.2多根電極測量 84
第七章 結論與未來展望 90
7.1結論 90
7.2未來展望 91
參考文獻(References) 93


&;#8195;


[1]S. Boisseau, G. Despesse, and B. A. Seddik, “Electrostatic conversion for vibration energy harvesting,” arXiv preprint, 2012.
[2]S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Computer Communications, vol. 26, pp. 1131-1144, 2003.
[3]P. Kotrappa, “Long term stability of electrets used in electret ion chambers, ” Journal of Electrostatics, vol. 66, no. 7, pp. 407-409, 2008.
[4]R. Kressmann, G. M. Sessler, and P. Gunther, “Space-charge electrets,” Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 3, no. 5, pp. 607-623, 1996.
[5]P. Gunther, H. Ding, and R. Gerhard-Multhaupt, “Electret properties of spin-coated Teflon-AF films,” Electrical Insulation and Dielectric Phenomena, 1993. Annual Report., Conference on, 1993.
[6]P. Gunther. “Charging, long-term stability, and TSD measurements of SiO 2 electrets,” Electrical Insulation, IEEE Transactions on, vol. 24, pp. 439-442, 1989.
[7]V. Leonov, P. Fiorini, and C. V. Hoof, “Stabilization of positive charge in SiO/sub 2//Si/sub 3/N/sub 4/electrets,” Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 13, no. 5, pp. 1049-1056, 2006.
[8]H. W. Lo and Y. C. Tai, “Parylene-based electret power generators,” Journal of Micromechanics and Microengineering, vol. 18, 2008.
[9]Y. Arakawa, Y. Suzuki, and N. Kasagi, “Micro Seismic Power Generator using Electret Polymer Film,” in Proc. PowerMEMS, pp. 187-190, 2004.
[10]T. Tsutsumino, Y. Suzuki, N. Kasagi, and Y. Sakane, “Seismic Power Generator Using High-Performance Polymer Electret,” in Proc. 19th IEEE Int. Conf. MEMS, pp. 98-101, 2006.
[11]Y. Suzuki, D. Miki, M. Edamoto, and M. Honzumi, “A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications,” Journal of Micromechanics and Microengineering, vol. 20, 2010.
[12]Y. Naruse, N. Matsubara, K. Mabuchi, M. Izumi, and S. Suzuki, “Electrostatic micro power generation from low-frequency vibration such as human motion,” Journal of Micromechanics and Microengineering, vol. 19, no. 9, pp. 960-1317, 2009.
[13]J. S. Boland, J. D. M. Messenger, and Y. C. Tai, “Alternative Designs of Liquid Rotor Electret Power Generator Systems,” Fourth International Workshop on Micro and Nanotechnology for Power Generation and I Energy Conversion Applications, 2004.
[14] J. S. Boland, J. D. M. Messenger, K. W. Lo, and Y. C. Tai, “Arrayed liquid rotor electret power generator systems,” Micro Electro Mechanical Systems, 18th IEEE International Conference on, pp. 618-621, 2005.
[15]J. S. Boland, S. Justin, and Y. C. Tai, “Method and system using liquid dielectric for electrostatic power generation,” U.S. Patent 7 446 450. 4, 2008.
[16]R. T. Borno, Transpiration as a Mechanism for Mechanical and Electrical Energy Conversion. DEEP BLUE, 2008.
[17]R. T. Borno, J. D. Steinmeyer, and M. M. Maharbiz, “Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows,” Applied Physics Letters, vol. 95, no. 1, 2009.
[18]T. Krupenkin, and J. A. Taylor, “Reverse electrowetting as a new approach to high-power energy harvesting,” Nature communications, vol. 2, no. 448, 2011.
[19]T. N. Krupenkin, “Method and apparatus for energy harvesting using microfluidics,” U.S. Patent 8 053 914. 8, 2011.
[20]Z. Yang, E. Halvorsen, and T. Dong, “Power generation from conductive droplet sliding on electret film,” Applied Physics Letters, vol. 100, no. 21, pp. 213905, 2012.
[21]Z. Yang, E. Halvorsen, and T. Dong, “Electrostatic Energy Harvester Employing Conductive Droplet and Thin-Film Electret,” Microelectromechanical Systems, vol. 23, pp. 315-323, 2014.
[22]Z. Yang, E. Halvorsen, and T. Dong. "Capacitance variation in electrostatic energy harvester with conductive droplet moving on electret film." Journal of Physics: Conference Series. vol. 476, no. 1, 2013.
[23]E. Y&;#305;ld&;#305;r&;#305;m and H. Kulah, “Electrostatic energy harvesting by droplet-based multi-phase microfluidics.” Microfluidics and nanofluidics, vol. 13, no.1, pp. 107-111, 2012.
[24]J.O. Mur Miranda, “Electrostatic vibration-to-electric energy conversion,” Diss. Massachusetts Institute of Technology, 2004.
[25]D. Lee, J. K. Moon, J. Jeong, “Electrical Power Generation by Mechanically Modulating Electrical Double Layers,” Bulletin of the American Physical Society, vol. 57, 2012.
[26]D. Shena, J. H. Parka, J. H. Noha, S. Y. Choeb, S. H. Kimc, H. C. Wikle III, and D. J. Kim, “Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting, “Sensor and Actuators A Physical, vol. 154, pp. 103–108, 2009.
[27]Y. Qin, X. Wang and Z. L. Wang, “Microfibre–nanowire hybrid structure for energy scavenging,“ Nature, vol. 451, pp. 809-813, 2008.
[28]O. Yaglioglu, “Modeling and design considerations for a micro-hydraulic piezoelectric power generator,” Doctoral dissertation, Massachusetts Institute of Technology, 2002.
[29]N. W. Hagood IV, D. C. Roberts, L. Saggere, M. A. Schmidt, M. Spearing, K. A. Breuer, J. A. Carrerero, “Development of micro-hydraulic transducer technology,” In Proceedings of the 10th International Conference on Adaptive Structures and Technologies, pp. 71-81, 2002.
[30]N. S. Shenckand, and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” Ieee Micro, vol. 21, pp. 30-42, 2001.
[31]P. G. Jones, M. J. Tudor, S. P. Beeby, and N. M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sensors and Actuators A: Physical, vol. 110, pp. 344-349, 2004.
[32]C. R. Saha, T. O’donnell, N. Wang, and P. McCloskey, “Electromagnetic generator for harvesting energy from human motion,” Sensors and Actuators A: Physical, vol. 147, no. 1, pp. 248-253, 2008.
[33]鄧吉雄,電子束蒸鍍機講義,NCKU Micro-Nano Technology Center/Southern Region MEMS Center。
[34]俊尚科技股份有限公司,物理氣相沉積,取自: http://www.junsun.com.tw/index.php/zh/2012-04-12-01-17-00/2012-04-12-01-19-01/physical-vapor-deposition?start=3。
[35]劉時閔,電漿高分子聚合膜對二氧化碳及甲烷氣體之分離性研究。民 89,國立中央大學化學工程研究所碩士論文。
[36]H, Yasuda, “Plasma for modification of polymers,” Journal of Macromolecular Science—Chemistry, vol. 10, pp. 383-420, 1976.
[37]H. K. Yasuda, Plasma Polymerization. Academic Press, London, 1985.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔