[1]Lamb, H. “On the propagation tremors over the surface the surface of an elastic solid.” Philos. Trans. R. Soc. London, Ser. A, A203, 1–42. 1904
[2]Achenbach, J. D. “Wave propagation in elastic solids”, North- Holland, Amsterdam, The Netherlands. (1973)
[3]Aki, K., and Richards, P. G. “Quantitative seismology theory and methods”, W. H. Freeman and Co., New York. (1980)
[4]Apsel, R. J., and Luco, J. E. “On the Green’s functions for a layered half space part II.” Bull. Seismol. Soc. Am., 734, 931–951. (1983)
[5]Pak, R. Y. S. “Asymmetric wave propagation in an elastic half-space by a method of potentials.” J. Appl. Mech., 54(1), 121–126. (1987)
[6]Pak, R. Y. S., and Guzina, B. B. “Three-dimensional Green’s functions for a multilayered half-space in displacement potentials.” J. Eng. Mech., 128(4), 449–461. (2002)
[7]V.A. Sveklo, “Plane waves and Rayleigh waves in anisotropic media”, Doklady Akademii Nauk SSSR 59 (1948) 871–874
[8]R. Stoneley, “The propagation of surface elastic waves in a cubic crystal,Proceedings of the Royal Society of London”, United Kingdom A232 (1955)447–458.
[9]L. Gold, “Rayleigh wave propagation on anisotropic (cubic) media”, PhysicalReview 104 (6) (1956) 1532–1536.
[10]H. Deresiewicz, R.D. Mindlin, “Waves on the surface of a crystal”, Journal of Applied Physics 28 (6) (1957) 669–671.
[11]J.L. Synge, “Elastic waves in anisotropic media”, Journal of Mathematical Physics 35 (1957) 323–335.
[12]D.C. Gazis, R. Herman, R.F. Wallis, “Surface elastic waves in cubic crystals”, Physical Review 119 (2) (1960) 533–544.
[13]V.T. Buchwald, “Rayleigh waves in anisotropic media”, Quarterly Journal of Mechanics and Applied Mathematics 14 (4) (1961) 461–468.
[14]V.T. Buchwald, A. Davis, “Surface waves in elastic media with cubic symmetry”, Quarterly Journal of Mechanics and Applied Mathematics 16 (1963) 283–293.
[15]L. Cagniard, “Reflexion et Refraction des Ondes Sismiques Progressives”, Gauthiers-Villars, Paris, 1939.
[16]A.T. de Hoop, “A modification of Cagniard’s method for solving seismic pulse problems”, Applied Science Research B8 (1960) 349–356.
[17]J.H.M.T. van der Hijden, “Propagation of Transient Elastic Waves in Stratified Anisotropic Media”, North-Holland, Amsterdam, The Netherlands, 1987.
[18]E.A. Kraut, “Advances in the theory of anisotropic elastic wave propagation”, Reviews of Geophysics 1 (3) (1963) 401–448.
[19]R. Burridge, “Lamb’s problem for an anisotropic half-space”, Quarterly Journal of Mechanics and Applied Mathematics 24 (1) (1971) 81–98.
[20]R.L. Ryan, “Pulse propagation in a transversely isotropic half-space”, Journal of Sound and Vibration 14 (4) (1971) 511–524.
[21]R.G. Payton, “Elastic Wave Propagation in Transversely Isotropic Media”, Martinus Nijhoff, The Hague, The Netherlands, 1983
[22]D.M. Barnett, J. Lothe, K. Nishioka, R.J. Asaro, “Elastic surface waves in anisotropic crystals: a simplified method for calculating Rayleigh velocities using dislocation theory”, Journal of Physics F: Metal Physics 3 (1973) 1083–1096.
[23]D.M. Barnett, J. Lothe, “Consideration of the existence of surface wave (Rayleigh wave) solutions in anisotropic elastic crystals”, Journal of Physics F: Metal Physics 4 (1974) 671–686.
[24]J. Lothe, D.M. Barnett, “On the existence of surface-wave solutions for anisotropic elastic half-spaces with free surface”, Journal of Applied Physics 47 (1976) 428–433.
[25]Wu, K.-C. “Extension of Stroh’s formalism to self-similar problems in two-dimensional elastodynamics.” Proceedings of the Royal Society of London (2000). A456, 869–890.
[26]Sveklo, V. A., Elastic vibrations of anisotropic bodies. Uchenye zapiski Leningr. univ. ser. matem. n. (Scientific Memoirs of Leningrad Univ. , Mathematical Sci- ences Series). No17, 1949.
[27]Rank, P. H. and von Mises. R., Differential and Integral Equations of Mathematical Physics, Part 2, Moscow-Leningrad, ONTI, 1937.
[28]Lighthill, M. J., 1960, “Study of magneto-hydrodynamic waves and other anisotropic wave motions”, Philosophical Transactions of the Royal Society of London,A, 252, 397–430.
[29]廖文義, “含缺陷半無限域程受彈性波之反應”, 國立台灣大學土木工程研究所博士論文 (1997)[30]ZHAO, Ai-Hua, ZHANG, Mei-Gen and DING, Zhi-Feng, “Seismic travel time computation for transversely isotropic media”, CHINESE JOURNAL OF GEOPHYSICS Vol.49, No.6, 2006, pp: 1603-1612
[31]C. G. Caracostis and A. R. Robinson and, “Wave propagation problem in certain elastic anisotropic half-spaces”, University of Illinois Engineering Experiment Station. College of Engineering. University of Illinois at Urbana-Champaign Technical Report :Civil Engineering Studies SRS-487,1980
[32]K.A. Anagnostopoulos, A. Charalambopoulos, C.V. Massalas. “On the investigation of elasticity equation for orthotropic materials and the solution of the associated scattering problem.”, Int. J. of Solids and Structures, 42 (2005), pp.6376–6408.&;#8195;