(3.235.108.188) 您好!臺灣時間:2021/03/03 19:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊善合
研究生(外文):Shan-He Yang
論文名稱:應用沉浸邊界法與移動網格模擬紊流流況下之結構物沖刷現象
論文名稱(外文):Application of the immersed boundary method and arbitrary Lagrangian-Eulerian scheme to simulate local scour in turbulent flow
指導教授:周逸儒
指導教授(外文):Yi-Ju Chou
口試委員:江允智劉啟民
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:大渦流模式沉浸邊界法移動網格法局部沖刷沙漣馬蹄形渦流
外文關鍵詞:large-eddy simulationimmersed boundary methodarbitrary Lagrangian -Eulerian methodlocal scoursand rippleshorseshoe vortex
相關次數:
  • 被引用被引用:1
  • 點閱點閱:295
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用大渦流模式結合沉浸邊界法與移動網格法,模擬流體經過一結構物對底部泥沙所造成沖刷堆積的影響,大渦流模式(Large eddy simulation)為三維的水動力模式,較能捕捉到在高雷諾數下的紊流現象,在高雷諾數的流場中特別重要。結構物表面的複雜邊界主要使用沉浸邊界法(Immersed boundary method)來處理,與傳統的貼體法(body-fitting)相比,沉浸邊界法假想力的形式寫進統御方程式使其滿足邊界條件,在卡氏座標即可很有效率的處理複雜幾何或是移動網格的問題,另外再底床網格的部分則使用移動網格法(Arbitrary Lagrangian-Eulerian scheme) 計算網格座標速度使其滿足泥沙傳輸,並且模擬紊流邊界層中的底床形貌變化。
本研究一開始使用沉浸邊界法模擬流體流經一圓柱,改變雷諾數由潛變流模擬至紊流,觀察其尾流的變化,確認邊界與流場符合現實情況後,我們再依照Roulund, et al.(2005)所做的實驗配置,設定邊界條件進行模擬,並且分別討論圓柱前緣沖刷與圓柱下游沙漣(sand ripples)的形成過程,以及紊流動能在沖刷過程中所扮演的腳色,結果發現沖刷最強的區域通常都受到一個持續穩定的上升流場給帶動,如前緣的馬蹄形渦流(horseshoe vortex)。一開始前緣掏刷出來的泥沙會在圓柱後方低壓區域產生堆積,堆積丘的下游處容易產生分離流動使得沙漣更加明顯。而紊流動能大的區域通常為流場交界處,該區域由於其動能消散(disspation rate)十分強,故會使部分懸浮泥沙失去動能而在此沉積。

In this study, we apply the large eddy simulation (LES) code that combines the immersed boundary method (IBM) and the arbitrary Lagrangian-Eulerian method (ALE) to simulate the evolution of the erodible bed around a structure. This code is a three dimensional computational fluid dynamics simulator, which is capable of resolving the detailed turbulent flow field. This is particularly important in the high Reynolds number flow. We employ the IBM to model the surface of the structure. Compared to traditional body-fitting methods, IBM applies the body force to satisfy the desired boundary condition. It can efficiently handle the complex geometry and moving grids in Cartesian coordinate system. In addition, we apply the ALE method in our grid. It can calculate the grid velocity to guarantee conservation of sediment mass and simulate bed form dynamics in a turbulent boundary layer.
We simulate flow over a cylinder as a test case for IBM. Cases ranging from the regimes of creeping flow to turbulent flow are investigated. The present numerical model is then validated against the experimental results by Roulund et al.(2005), who investigated erosion around a cylinder in a laboratory setting. We discuss erosion in front of the cylinder, the development of sand ripples behind the cylinder, and turbulence kinetic energy (TKE). The numerical results show that the most dramatic erosion region is affected by the steady upflow associated with the horseshoe vortex. Moreover, we observe that sediments in front of the edge pile up in the lower pressure area. Flow separation easily occurs behind the ripples, leading to the growth of the ripple amplitude. We found that high TKE occurs at regions of flow convergence, which is usually associated with strong dissipation, leading to the deposition of suspended sediments.

致謝 i
中文摘要 ii
ABSTRACT iii
圖目錄 vi
表目錄 ix
Chapter 1 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 沉浸邊界法 3
1.3.2 底床沖刷 4
Chapter 2 理論背景與方法 7
2.1 大渦流模式 8
2.1.1 統御方程式 9
2.1.2 濾波統御方程式 10
2.1.3 曲線座標格式 12
2.1.4 流體離散化計算流程 13
2.2 移動網格與泥沙傳輸方程式 15
2.2.1 密度分層 15
2.2.2 泥沙傳輸方程式 16
2.2.3 移動網格法 17
2.2.4 掏刷方程式 18
2.2.5 底床高度方程式 19
Chapter 3 沉浸邊界法介紹與驗證 22
3.1 沉浸邊界法離散化 22
3.2 流經圓柱之潛變流驗證 27
3.3 流體流經圓柱(不同雷諾數) 31
Chapter 4 底床沖刷模擬與分析 39
4.1 模擬配置 39
4.2 流場分析I (定床) 42
4.2.1 馬蹄形渦流 42
4.2.2 尾跡渦流 45
4.2.3 底床剪應力 46
4.2.4 紊流動能 46
4.3 流場分析II (動床) 48
4.3.1 圓柱前緣分析 48
4.3.2 圓柱後端分析 53
4.4 紊流動能分析 57
4.5 侵蝕深度分析 59
Chapter 5 結論與未來工作 61
5.1 結論 61
5.2 未來工作 63
參考文獻 64


Blevins, R. D (1990), Flow Induced Vibration, 2nd Edn., Van Nostrand Reinhold Co
Chou, Y., and O. B. Fringer (2010), “Consistent discretization for simulations of flows with moving generalized curvilinear coordinates”, Int. J. Numer. Methods Fluids, 62, 802–826
Chou, Y., and O. B. Fringer (2010), “A model for the simulation of coupled &;#64258;ow-bedform evolution in turbulent &;#64258;ows”, J Geophys Res:115
Dargahi, B. (1989), “The turbulent flow around a circular cylinder”, Exps. Fluids 8, 1–12.
Dargahi, B. (1990), ”Controlling Mechanism of Local Scouring”, J. Hydraul. Eng. 1990.116:1197-1214.
E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof (2000), “Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations”, Journal of Computational Physics, 161(1):35-60
D. Goldstein, R. Handler, and L. Sirovich (1993), “Modeling a No-Slip Flow Boundary with an External Force Field”, Journal of Computational Physics, 105(2):354-366
Hunt, J. C. R., Wray, A. A. &; Moin, P. (1988), Eddies, “stream, and convergence zones in turbulent &;#64258;ows”, Center for Turbulence Research Rep. CTR-S88.
Melville, B. W. &; Raudkivi, A. J. (1977), “Flow characteristics in local scour at bridge piers”, J. Hydraul. Res. 15, 373–380.
Melville, B. W., and Chiew, Y. M. (1999), “Time scale for local scour at bridge piers.” , J. Hydraul. Eng., 10.1061/(ASCE)0733-9429(1999) 125:1(59), 59–65.
Olsen, N. R. B. &; Melaaen, M. C. (1993), “Three-dimensional calculation of scour around cylinders”, J. Hydraulic Engng ASCE 119, 1048–1054.
Olsen, N. R. B. &; Kjellesvig, H. M. (1998), ” Three-dimensional numerical flow modelling for estimation of maximum local scour”, J. Hydraul. Res. 36, 579–590.
Paik, Escauriaza &; Sotiropoulos (2007), “On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body Junction”, Physics of Fluids 19, 045107
C.S. Peskin (1977), “Numerical analysis of blood flow in the heart”, J. Comput. Phys. 25 220–252.
Richardson, J. E. &; Panchang, V. G. (1998), “Three-dimensional simulation of scour-inducing flow at bridge piers”, J. Hydraul. Engng ASCE 124, 530–540.
Roulund, Sumer, Fredsoe &; Michelsen (2005), ” Numerical and experimental investigation of flow and scour around a circular pile”, J. Fluid Mech. , vol. 534, pp.351–401.
E.M. Saiki and S. Biringen (1996), “Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method”, Journal of Computational Physics, 123(2):450-465
Shields AF (1936), “Application of similarity principles and turbulence research to bed-load movement”, vol 26. Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau,Berlin, Germany, pp 5–24
Soulsby, R. (1997), “Dynamics of Marine Sands: A Manual for Practical Applications, Telford, London.
Tseng, M.-H., Yen, C.-L. &; Song, C. C. S. (2000), “Computation of three-dimensional flow around square and circular piers”, Intl J. Numer. Methods Fluids 34, 207–227.
Van Rijn, L. C. (1993), Principles of Sediment Transport in Rivers, Estuaries,and Coastal Seas, Aqua, Amsterdam.
Y.H. Tseng and J.H. Ferziger (2003), “A ghost-cell immersed boundary method for ow in complex geometry”, Journal of Computational Physics, 192(2):593-623
Zang, Y., R. L. Street, and J. R. Koseff (1993), “A dynamic mixed subgrid scale model and its application to turbulent recirculation flows”, Phys.Fluids, 5, 3186–3196.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔