[1] Vinet, F., P. Chaton, and Y. Fouillet, Microarrays and microfluidic devices: miniaturized systems for biological analysis. Microelectronic Engineering, 2002. 61-62: p. 41-47.
[2] Brown, P.O. and D. Botstein, Exploring the new world of the genome with DNA microarrays. Nat Genet, 1999. 21(1 Suppl): p. 33-7.
[3] Hoos, A. and C. Cordon-Cardo, Tissue microarray profiling of cancer specimens and cell lines: opportunities and limitations. Lab Invest, 2001. 81(10): p. 1331-8.
[4] Manz, A., N. Graber, and H.M. Widmer, Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing. Sensors and Actuators B-Chemical, 1990. 1(1-6): p. 244-248.
[5] Wang, Y.C., A.L. Stevens, and J. Han, Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem, 2005. 77(14): p. 4293-9.
[6] Astorga-Wells, J. and H. Swerdlow, Fluidic preconcentrator device for capillary electrophoresis of proteins. Anal Chem, 2003. 75(19): p. 5207-12.
[7] Song, S., A.K. Singh, and B.J. Kirby, Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Analytical Chemistry, 2004. 76(15): p. 4589-4592.
[8] Khandurina, J., et al., Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem, 1999. 71(9): p. 1815-9.
[9] Foote, R.S., et al., Preconcentration of proteins on microfluidic devices using porous silica membranes. Anal Chem, 2005. 77(1): p. 57-63.
[10] Cong Yu, Mark H. Davey, Frantisek Svec, and Jean M. J. Fre’chet., Monolithic Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device. Anal. Chem. 2001, 73, 5088-5096
[11] Glaser, R.W., Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics. Anal Biochem, 1993. 213(1): p. 152-61.
[12] Oleschuk, R.D., et al., Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Analytical Chemistry, 2000. 72(3): p. 585-590.
[13] Yu, C., et al., Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Analytical Chemistry, 2001. 73(21): p. 5088-5096.
[14] Burgi, D.S. and R.L. Chien, Optimization in Sample Stacking for High-Performance Capillary Electrophoresis. Analytical Chemistry, 1991. 63(18): p. 2042-2047.
[15] Quirino, J.P. and S. Terabe, Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science, 1998. 282(5388): p. 465-8.
[16] Quirino, J.P. and S. Terabe, Approaching a Million-Fold Sensitivity Increase in Capillary Electrophoresis with Direct Ultraviolet Detection: Cation-Selective Exhaustive Injection and Sweeping. Analytical Chemistry, 2000. 72(5): p. 1023-1030.
[17] Pu, Q.S., et al., Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Letters, 2004. 4(6): p. 1099-1103.
[18] Kim, S.J., et al., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett, 2007. 99(4): p. 044501.
[19] Lee, J.H., Y.A. Song, and J. Han, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip, 2008. 8(4): p. 596-601.
[20] Lee,J H., Y.A. Song, Steven R. Tannenbaum, and J. Han. Increase of Reaction Rate and Sensitivity of Low-Abundance Enzyme Assay Using Micro/Nanofluidic Preconcentration Chip. Anal. Chem. 2008, 80, 3198-3204
[21] Kim, S.J. and J. Han. Self-Sealed Vertical Polymeric Nanoporous-Junctions for High-Throughput Nanofluidic Applications. Anal. Chem. 2008, 80, 3507-3511
[22] Turner, S.W., et al., Monolithic nanofluid sieving structures for DNA manipulation. Journal of Vacuum Science &; Technology B, 1998. 16(6): p. 3835-3840.
[23] N. R. Tas, J. W. Berenschot, P. Mela, H. V. Jansen, M. Elwenspoek, and A. van den Berg., 2D-Confined Nanochannels Fabricated by Conventional Micromachining. Nano Letters. 2002 vol. 2, No. 9, 1031-1032
[24] Tong, H.D., et al., Silicon Nitride Nanosieve Membrane. Nano Letters, 2004. 4(2): p. 283-287.
[25] Mao, P. and J. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip, 2005. 5(8): p. 837-44.
[26] Kim, S.M., M.A. Burns, and E.F. Hasselbrink, Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Analytical Chemistry, 2006. 78(14): p. 4779-4785.
[27] Greta M. Lee, Akira Ishihara, and Ken A. Jacobson, Direct observation of Brownian motion of lipids in a membrane. Proc. Nadl. Acad. Sci 1991. Vol. 88, p. 6274-6278.
[28] Kozack, R.E., and Subramaniam, S., "Brownian Dynamics Simulations of Molecular Recognition in an Antibody-Antigen System." Protein Science Vol. 2, pp. 915-926, 1993.
[29] Brenner, H., "The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface." Chemical Engineering Science Vol. 16, pp. 242-251, 1961.
[30] Goldman, A.J. et al., "Slow Viscous Motion of a Sphere Parallel to a Plane Wall—I Motion through a Quiescent Fluid." Chemical Engineering Science Vol. 22, pp. 637-651, 1967.
[31] Lin, B. et al., "Direct Measurements of Constrained Brownian Motion of an Isolated Sphere between Two Walls." PHYSICAL REVIEW E Vol. 62, pp. 3909-3919, 2000.
[32] Astalan, A.P. et al., "Biomolecular Reactions Studied Using Changes in Brownian Rotation Dynamics of Magnetic Particles." Biosensors and Bioelectronics Vol. 19, pp. 945-951, 2004.
[33] Lavalette, D. et al., "Proteins as Micro Viscosimeters: Brownian Motion Revisited." European Biophysics Journal Vol. 35, pp. 517-522, 2006.
[34] Batchelor, G.K., and Green, J.T., "The Hydrodynamic Interaction of Two Small Freely-Moving Spheres in a Linear Flow Field." Journal of Fluid Mechanics Vol. 56, pp. 375-400, 1972.
[35] Medina-Noyola, M. . "Long-Time Self-Diffusion in Concentrated Colloidal Dispersions." Physical Review Letters Vol. 20, pp. 2705-2708, 1988.
[36] Kao, M.H., and Yodh, A.G. . "Observation of Brownian Motion on the Time Scale of Hydrodynamic Interactions." Physical Review Letters Vol. 70, pp. 242-245, 1993.
[37] Melling, A., "Tracer Particles and Seeding for Particle Image Velocimetry." Measurement Science and Technology Vol. 8, pp. 1406-1416, 1997.
[38] Shigeru, M., and Hiroshi, S. . "Measurement of Unsteady Separated Flows on a Blunt Plate by a Fourier Transform Method." Flow Visualization VI pp. 710-714, 1992.
[39] Adrian, R.J., "Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimetry." Applied Optics Vol. 25, pp. 3855-3858, 1986a.
[40] Adrian, R.J., "Multi-Point Optical Measurements of Simultaneous Vectors in Unsteady Flow—a Review." International Journal of Heat and Fluid Flow Vol. 7, pp. 127-145, 1986b.
[41] Lourenco, L. et al., "Noninvasive Experimental Technique for the Measurement of Unsteady Velocity Fields." AIAA Journal Vol. 24, pp. 1715-1717, 1986.
[42] Lourenco, L., and Krothapalli, A., "The Role of Photographic Parameters in Laser Speckle or Particle Image Displacement Velocimetry." Experiments in Fluids Vol. 5, pp. 29-32, 1987.
[43] Vogel, A., and Lauterborn, W., "Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics." Applied Optics Vol. 27, pp. 1869-1876, 1988.
[44] Joshi, S. R., "Improvement of Algorithm in the Particle Tracking Velocimetry Using Self-Organizing Maps." Journal of the Institute of Engineering Vol. 7, 2009.
[45] Melling, A., "Tracer Particles and Seeding for Particle Image Velocimetry." Measurement Science and Technology Vol. 8, pp. 1406-1416, 1997.
[46] Raffel, M. et al., Particle Image Velocimetry: A Practical Guide. Springer-Verlag, 2002.
[47] Zettner, C.M., and Yoda, M., "Particle Velocity Field Measurements in a near-Wall Flow Using Evanescent Wave Illumination." Experiments in Fluids Vol. 34, pp. 115-121, 2003.
[48] Sadr, R. et al., "An Experimental Study of Electro-Osmotic Flow in Rectangular Microchannels." Journal of Fluid Mechanics Vol. 506, pp. 357-367, 2004.
[49] Willert, C.E., and Gharib, M. . "Digital Particle Image Velocimetry." Experiments in Fluids Vol. 10, pp. 181-193, 1991.
[50] Prasad, A.K., and Adrian, R. J., "Stereoscopic Particle Image Velocimetry Applied to Liquid Flows." Experiments in Fluids Vol. 15, pp. 49-60, 1993.
[51] Willert, C., "Stereoscopic Particle Image Velocimetry for Application in Wind Tunnel Flows." Measurement Science and Technology Vol. 8, pp. 1465-1479, 1997.
[52] Uemura, T. et al., "High Speed Algorithm of Image Analysis for Real Time Measurement of Two-Dimensional Velocity Distribution." Flow Visualization Vol. 85, pp. 129-134, 1989.
[53] Labonte’, G., "A New Neural Network for Particle-Tracking Velocimetry." Experiments in Fluids Vol. 26, pp. 340-346, 1999.
[54] Keane, R.D., and Adrian, R. J. . "Theory of Cross-Correlation Analysis of Piv Images " Applied Scientific Research Vol. 49, pp. 192-215, 1992.
[55] Keane, R.D. et al., "Super-Resolution Particle Imaging Velocimetry." Measurement Science and Technology Vol. 6, pp. 754-768, 1998.
[56] Kaga, A. et al., "Flow Feld Estimation Using Piv-Data and Fuid Dynamic Equations." Proc. 2nd International Workshop on PIV pp. 131-136, 1997.
[57] Cowen, E.A., and Monismith, S.G., "A Hybrid Digital Particle Tracking Velocimetry Technique." Experiments in Fluids Vol. 22, pp. 199-211, 1997.
[58] 鍾珮珊. "利用電流特性觀察微奈米濃縮晶片之作用機制及其應用" 碩士論文. 國立台灣大學, 2013.
[59] Lee, J.H., Y.A. Song, and J. Han, Multiplexed proteomic sample preconcentration devifce using surface-patterned ion-selective membrane. Lab Chip, 2008. 8(4): p. 596-601.
[60] Plecis, A., R.B. Schoch, and P. Renaud, Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett, 2005. 5(6): p. 1147-55.
[61] Dukhin, S.S., Electrokinetic phenomena of the second kind and their applications. Advances in Colloid and Interface Science, 1991. 35: p. 173-196.
[62] Leinweber, F.C. and U. Tallarek, Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir, 2004. 20(26): p. 11637-48.
[63] Rubinstein, I. and B. Zaltzman, Electro-osmotically induced convection at a permselective membrane. Physical Review E, 2000. 62(2): p. 2238-2251.
[64] Kenneth A. Mauritz and Robert B. Moore, State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535&;#8722;4585.
[65] Lin, S., et al., Determination of Binding Constant and Stoichiometry for Antibody-Antigen Interaction with Surface Plasmon Resonance. Current Proteomics, 2006. 3(4): p. 271-282.
[66] 王子瑜、曹恒光. "布朗運動、郎之萬方程式、與布朗動力學." 物理雙月刊第廿七卷第三期 pp. 456-460, 2005.[67] Adrian, R.J., and Westerweel, J., Particle Image Velocimetry. Cambridge University Press, 2011.
[68] Baek, S.J., and Lee, S. J. . "A New Two-Frame Particle Tracking Algorithm Using Match Probability." Experiments in Fluids Vol. 22, pp. 23-32, 1996.
[69] 廖亭雅. "以布朗運動檢測技術應用於齒舌蘭輪班病毒檢測." 碩士論文. 國立台灣大學, 2013.
[70] 范育睿. "利用微粒子追蹤測速儀量測c反應蛋白之布朗運動及其反應檢測." 碩士論文. 國立台灣大學, 2008.