(3.232.129.123) 您好!臺灣時間:2021/02/26 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱珩嘉
研究生(外文):Heng-Chia Chiou
論文名稱:利用布朗運動檢測方法於奈米薄膜濃縮晶片之技術
論文名稱(外文):A Biosensing Method Based on Nano-Particles’ Brownian Motion Applied to Nanofluidic Preconcentration Chip
指導教授:沈弘俊沈弘俊引用關係
指導教授(外文):Horn-Jiunn Sheen
口試委員:吳光鐘魏培坤
口試委員(外文):Kuang-Chong WuPei-Kuen Wei
口試日期:2014-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:布朗運動奈米粒子離子選擇性濃度極化氣閥微粒子追蹤測速儀
外文關鍵詞:NafionBrownian motionion-selective membraneion concentration polarization (ICP)pneumatic valvemicro-Particle Tracking Velocimetry (micro-PTV)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發一新的檢測系統,使用微奈米濃縮晶片對生物樣本進行預濃縮後,利用氣閥捕捉濃縮區塊,再進行布朗運動的檢測分析。主要的微奈米流體濃縮晶片,是使用Nafion奈米薄膜作為離子選擇性通道,又可稱為濃縮器(precon- centrator),施加一電位差於具有離子選擇性(ion-selective)效果的Nafion薄膜上可產生濃度極化效應(ion concentration polarization),於高電位處產生離子空乏區(ion depletion region)。此時施加偏壓可產生第二種電滲透流(electroosmosis of second kind),可在高電位處的空乏區旁產生原本樣本濃度的105~106倍的濃縮區塊(preconcentration plug),可以大幅降低濃度的生物樣本的偵測下限。達到低濃度生物標記(biomarker)的偵測,使用氣閥(pneumatic valve)將濃縮區塊捕捉後,結合布朗運動,利用抗原與抗體間之專一性(Specific Relationship)辨認作為檢測機制。
  本文詳述使用Nafion奈米薄膜濃縮晶片的設計與驗證,包括Nafion的導電率與晶片電阻模型的驗證、以及氣閥捕捉濃縮區塊的成效。使用LabVIEW架設迴路電流監測系統觀測電流與濃縮之間的特性,並以微粒子追蹤測速儀(micro-Particle Pracking Velocimetry, micro-PTV)進行布朗運動的量測與分析。
  本研究所開發的檢測方法具有降低生物樣本偵測下限,提高檢測靈敏度的能力,因此將來可以使用在不同的低濃度生物樣本上,以利後端的生物檢測。


In this thesis, we have developed a novel detection method based on capturing preconcentrated plug preconcentrated by preconcentration chip and Brownian motion detection. Applying voltage drop to the preconcentrator which use Nafion as ion-selective membrane can generate ion concentration polarization (ICP) effect. The electroosmosis of second kind which generate by applying the bias voltage, force bulk solution to aggregate the preconcentration plug near the depletion region. Using the Brownian motion which analyze the characteristic of antigen-antibody interactions as detection mechanism to detect the preconcentration plug captured by pneumatic valve.
  The design and the validation methods and processes of nanofluidic preconcentration chips and pneumatic valve were proposed starting from validation of resistive models, test of ion-selective membrane and test of Brownian motion by micro-Particle Tracking Velocimetry (micro-PTV), to get the onset of detection mechanism.
  In summary, the presented nanofluidic preconcentrator and pneumatic valve demonstrates biological sample can be preconcentrated in short time and the plug can be captured by valve. With the analysis of loop currents and Brownian motion detection, various low biological sample could be demonstrated in the future.


致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 導論 1
1-1前言 1
1-2 研究動機與目的 1
1-3 研究方法 2
1-4 論文架構 2
第二章 文獻回顧 3
2-1生物晶片感測文獻回顧 3
2-1-1微全程分析系統(Micro Total Analysis Systems, μTAS) 3
2-1-2免疫分析法(Immunoassay) 3
2-1-3樣本前處理之欲濃縮技術 4
2-2微奈米流體濃縮晶片文獻回顧 5
2-2-1 微奈米流體晶片之發展 5
2-2-2奈米流體晶片製程 10
2-3布朗運動文獻回顧 13
2-4微粒子影像測速儀/粒子追蹤測速儀文獻回顧 14
第三章 實驗理論及技術背景 17
3-1微奈米濃縮晶片之濃縮原理 17
3-1-1電雙層 17
3-1-2離子的區域性空乏與濃縮現象 20
3-1-3離子選擇性薄膜之電壓與電流的S曲線 24
3-1-4預濃縮機制 (Mechanism of preconcentration) 25
3-2以 Nafion離子選擇性材料為奈米流道 26
3-3微奈米濃縮晶片之免疫分析原理 27
3-3-1生物分子相互作用分析法 27
3-4 布朗運動數學模型 28
3-4-1 愛因斯坦關係式 29
3-4-2 朗之文方程式 31
第四章 實驗設備與實驗方法 33
4-1 濃縮晶片的設計與製程 34
4-1-1製程方法 34
4-2微奈米流體濃縮晶片之量測系統 41
4-2-1 倒立式螢光顯微鏡量測系統 41
4-2-2 LabView架設迴路電流量測系統 42
4-3 NafionR之導電率量測與驗證 44
4-4 微粒子影像與微粒子追蹤測速儀原理 46
4-4-1 微粒子影像/追蹤測速實驗設備 48
4-5 奈米粒子表面之抗體修飾 52
4-5-1螢光粒子之選用 52
4-5-2奈米粒子表面之抗體修飾流程 52
第五章 實驗結果與討論 55
5-1微奈米流體濃縮晶片結果與討論 55
5-1-1利用觀測迴路電流驗證濃縮晶片機制 55
5-1-2濃縮機制現象的觀察與討論 58
5-1-3蛋白質濃縮倍率之亮度分析 59
5-2氣閥捕捉特定區塊之分別驗證 62
5-2-1捕捉區塊後布朗運動檢測 63
5-2-2捕捉區塊後的濃縮效果 64
第六章 總結與未來展望 67
6-1 總結 67
6-2 未來展望 68



[1] Vinet, F., P. Chaton, and Y. Fouillet, Microarrays and microfluidic devices:   miniaturized systems for biological analysis. Microelectronic Engineering, 2002.   61-62: p. 41-47.
[2] Brown, P.O. and D. Botstein, Exploring the new world of the genome with DNA   microarrays. Nat Genet, 1999. 21(1 Suppl): p. 33-7.
[3] Hoos, A. and C. Cordon-Cardo, Tissue microarray profiling of cancer specimens   and cell lines: opportunities and limitations. Lab Invest, 2001. 81(10): p. 1331-8.
[4] Manz, A., N. Graber, and H.M. Widmer, Miniaturized Total Chemical-Analysis   Systems - a Novel Concept for Chemical Sensing. Sensors and Actuators   B-Chemical, 1990. 1(1-6): p. 244-248.
[5] Wang, Y.C., A.L. Stevens, and J. Han, Million-fold preconcentration of proteins   and peptides by nanofluidic filter. Anal Chem, 2005. 77(14): p. 4293-9.
[6] Astorga-Wells, J. and H. Swerdlow, Fluidic preconcentrator device for capillary   electrophoresis of proteins. Anal Chem, 2003. 75(19): p. 5207-12.
[7] Song, S., A.K. Singh, and B.J. Kirby, Electrophoretic concentration of proteins   at laser-patterned nanoporous membranes in microchips. Analytical Chemistry,   2004. 76(15): p. 4589-4592.
[8] Khandurina, J., et al., Microfabricated porous membrane structure for sample   concentration and electrophoretic analysis. Anal Chem, 1999. 71(9): p. 1815-9.
[9] Foote, R.S., et al., Preconcentration of proteins on microfluidic devices using   porous silica membranes. Anal Chem, 2005. 77(1): p. 57-63.
[10] Cong Yu, Mark H. Davey, Frantisek Svec, and Jean M. J. Fre’chet., Monolithic   Porous Polymer for On-Chip Solid-Phase Extraction and Preconcentration   Prepared by Photoinitiated in Situ Polymerization within a Microfluidic Device. Anal. Chem. 2001, 73, 5088-5096
[11] Glaser, R.W., Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics. Anal Biochem, 1993. 213(1): p. 152-61.
[12] Oleschuk, R.D., et al., Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Analytical Chemistry, 2000. 72(3): p. 585-590.
[13] Yu, C., et al., Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Analytical Chemistry, 2001. 73(21): p. 5088-5096.
[14] Burgi, D.S. and R.L. Chien, Optimization in Sample Stacking for High-Performance Capillary Electrophoresis. Analytical Chemistry, 1991. 63(18): p. 2042-2047.
[15] Quirino, J.P. and S. Terabe, Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science, 1998. 282(5388): p. 465-8.
[16] Quirino, J.P. and S. Terabe, Approaching a Million-Fold Sensitivity Increase in Capillary Electrophoresis with Direct Ultraviolet Detection: Cation-Selective Exhaustive Injection and Sweeping. Analytical Chemistry, 2000. 72(5): p. 1023-1030.
[17] Pu, Q.S., et al., Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Letters, 2004. 4(6): p. 1099-1103.
[18] Kim, S.J., et al., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett, 2007. 99(4): p. 044501.
[19] Lee, J.H., Y.A. Song, and J. Han, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip, 2008. 8(4): p. 596-601.
[20] Lee,J H., Y.A. Song, Steven R. Tannenbaum, and J. Han. Increase of Reaction Rate and Sensitivity of Low-Abundance Enzyme Assay Using Micro/Nanofluidic Preconcentration Chip. Anal. Chem. 2008, 80, 3198-3204
[21] Kim, S.J. and J. Han. Self-Sealed Vertical Polymeric Nanoporous-Junctions for High-Throughput Nanofluidic Applications. Anal. Chem. 2008, 80, 3507-3511
[22] Turner, S.W., et al., Monolithic nanofluid sieving structures for DNA manipulation. Journal of Vacuum Science &; Technology B, 1998. 16(6): p. 3835-3840.
[23] N. R. Tas, J. W. Berenschot, P. Mela, H. V. Jansen, M. Elwenspoek, and A. van den Berg., 2D-Confined Nanochannels Fabricated by Conventional Micromachining. Nano Letters. 2002 vol. 2, No. 9, 1031-1032
[24] Tong, H.D., et al., Silicon Nitride Nanosieve Membrane. Nano Letters, 2004. 4(2): p. 283-287.
[25] Mao, P. and J. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab Chip, 2005. 5(8): p. 837-44.
[26] Kim, S.M., M.A. Burns, and E.F. Hasselbrink, Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Analytical Chemistry, 2006. 78(14): p. 4779-4785.
[27] Greta M. Lee, Akira Ishihara, and Ken A. Jacobson, Direct observation of Brownian motion of lipids in a membrane. Proc. Nadl. Acad. Sci 1991. Vol. 88, p. 6274-6278.
[28] Kozack, R.E., and Subramaniam, S., "Brownian Dynamics Simulations of Molecular Recognition in an Antibody-Antigen System." Protein Science Vol. 2, pp. 915-926, 1993.
[29] Brenner, H., "The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface." Chemical Engineering Science Vol. 16, pp. 242-251, 1961.
[30] Goldman, A.J. et al., "Slow Viscous Motion of a Sphere Parallel to a Plane Wall—I Motion through a Quiescent Fluid." Chemical Engineering Science Vol. 22, pp. 637-651, 1967.
[31] Lin, B. et al., "Direct Measurements of Constrained Brownian Motion of an Isolated Sphere between Two Walls." PHYSICAL REVIEW E Vol. 62, pp. 3909-3919, 2000.
[32] Astalan, A.P. et al., "Biomolecular Reactions Studied Using Changes in Brownian Rotation Dynamics of Magnetic Particles." Biosensors and Bioelectronics Vol. 19, pp. 945-951, 2004.
[33] Lavalette, D. et al., "Proteins as Micro Viscosimeters: Brownian Motion Revisited." European Biophysics Journal Vol. 35, pp. 517-522, 2006.
[34] Batchelor, G.K., and Green, J.T., "The Hydrodynamic Interaction of Two Small Freely-Moving Spheres in a Linear Flow Field." Journal of Fluid Mechanics Vol. 56, pp. 375-400, 1972.
[35] Medina-Noyola, M. . "Long-Time Self-Diffusion in Concentrated Colloidal Dispersions." Physical Review Letters Vol. 20, pp. 2705-2708, 1988.
[36] Kao, M.H., and Yodh, A.G. . "Observation of Brownian Motion on the Time Scale of Hydrodynamic Interactions." Physical Review Letters Vol. 70, pp. 242-245, 1993.
[37] Melling, A., "Tracer Particles and Seeding for Particle Image Velocimetry." Measurement Science and Technology Vol. 8, pp. 1406-1416, 1997.
[38] Shigeru, M., and Hiroshi, S. . "Measurement of Unsteady Separated Flows on a Blunt Plate by a Fourier Transform Method." Flow Visualization VI pp. 710-714, 1992.
[39] Adrian, R.J., "Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimetry." Applied Optics Vol. 25, pp. 3855-3858, 1986a.
[40] Adrian, R.J., "Multi-Point Optical Measurements of Simultaneous Vectors in Unsteady Flow—a Review." International Journal of Heat and Fluid Flow Vol. 7, pp. 127-145, 1986b.
[41] Lourenco, L. et al., "Noninvasive Experimental Technique for the Measurement of Unsteady Velocity Fields." AIAA Journal Vol. 24, pp. 1715-1717, 1986.
[42] Lourenco, L., and Krothapalli, A., "The Role of Photographic Parameters in Laser Speckle or Particle Image Displacement Velocimetry." Experiments in Fluids Vol. 5, pp. 29-32, 1987.
[43] Vogel, A., and Lauterborn, W., "Time-Resolved Particle Image Velocimetry Used in the Investigation of Cavitation Bubble Dynamics." Applied Optics Vol. 27, pp. 1869-1876, 1988.
[44] Joshi, S. R., "Improvement of Algorithm in the Particle Tracking Velocimetry Using Self-Organizing Maps." Journal of the Institute of Engineering Vol. 7, 2009.
[45] Melling, A., "Tracer Particles and Seeding for Particle Image Velocimetry." Measurement Science and Technology Vol. 8, pp. 1406-1416, 1997.
[46] Raffel, M. et al., Particle Image Velocimetry: A Practical Guide. Springer-Verlag, 2002.
[47] Zettner, C.M., and Yoda, M., "Particle Velocity Field Measurements in a near-Wall Flow Using Evanescent Wave Illumination." Experiments in Fluids Vol. 34, pp. 115-121, 2003.
[48] Sadr, R. et al., "An Experimental Study of Electro-Osmotic Flow in Rectangular Microchannels." Journal of Fluid Mechanics Vol. 506, pp. 357-367, 2004.
[49] Willert, C.E., and Gharib, M. . "Digital Particle Image Velocimetry." Experiments in Fluids Vol. 10, pp. 181-193, 1991.
[50] Prasad, A.K., and Adrian, R. J., "Stereoscopic Particle Image Velocimetry Applied to Liquid Flows." Experiments in Fluids Vol. 15, pp. 49-60, 1993.
[51] Willert, C., "Stereoscopic Particle Image Velocimetry for Application in Wind Tunnel Flows." Measurement Science and Technology Vol. 8, pp. 1465-1479, 1997.
[52] Uemura, T. et al., "High Speed Algorithm of Image Analysis for Real Time Measurement of Two-Dimensional Velocity Distribution." Flow Visualization Vol. 85, pp. 129-134, 1989.
[53] Labonte’, G., "A New Neural Network for Particle-Tracking Velocimetry." Experiments in Fluids Vol. 26, pp. 340-346, 1999.
[54] Keane, R.D., and Adrian, R. J. . "Theory of Cross-Correlation Analysis of Piv Images " Applied Scientific Research Vol. 49, pp. 192-215, 1992.
[55] Keane, R.D. et al., "Super-Resolution Particle Imaging Velocimetry." Measurement Science and Technology Vol. 6, pp. 754-768, 1998.
[56] Kaga, A. et al., "Flow Feld Estimation Using Piv-Data and Fuid Dynamic Equations." Proc. 2nd International Workshop on PIV pp. 131-136, 1997.
[57] Cowen, E.A., and Monismith, S.G., "A Hybrid Digital Particle Tracking Velocimetry Technique." Experiments in Fluids Vol. 22, pp. 199-211, 1997.
[58] 鍾珮珊. "利用電流特性觀察微奈米濃縮晶片之作用機制及其應用" 碩士論文. 國立台灣大學, 2013.
[59] Lee, J.H., Y.A. Song, and J. Han, Multiplexed proteomic sample preconcentration devifce using surface-patterned ion-selective membrane. Lab Chip, 2008. 8(4): p. 596-601.
[60] Plecis, A., R.B. Schoch, and P. Renaud, Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett, 2005. 5(6): p. 1147-55.
[61] Dukhin, S.S., Electrokinetic phenomena of the second kind and their applications. Advances in Colloid and Interface Science, 1991. 35: p. 173-196.
[62] Leinweber, F.C. and U. Tallarek, Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir, 2004. 20(26): p. 11637-48.
[63] Rubinstein, I. and B. Zaltzman, Electro-osmotically induced convection at a permselective membrane. Physical Review E, 2000. 62(2): p. 2238-2251.
[64] Kenneth A. Mauritz and Robert B. Moore, State of Understanding of Nafion. Chem. Rev. 2004, 104, 4535&;#8722;4585.
[65] Lin, S., et al., Determination of Binding Constant and Stoichiometry for Antibody-Antigen Interaction with Surface Plasmon Resonance. Current Proteomics, 2006. 3(4): p. 271-282.
[66] 王子瑜、曹恒光. "布朗運動、郎之萬方程式、與布朗動力學." 物理雙月刊第廿七卷第三期 pp. 456-460, 2005.
[67] Adrian, R.J., and Westerweel, J., Particle Image Velocimetry. Cambridge University Press, 2011.
[68] Baek, S.J., and Lee, S. J. . "A New Two-Frame Particle Tracking Algorithm Using Match Probability." Experiments in Fluids Vol. 22, pp. 23-32, 1996.
[69] 廖亭雅. "以布朗運動檢測技術應用於齒舌蘭輪班病毒檢測." 碩士論文. 國立台灣大學, 2013.
[70] 范育睿. "利用微粒子追蹤測速儀量測c反應蛋白之布朗運動及其反應檢測." 碩士論文. 國立台灣大學, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔