跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/14 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士凱
研究生(外文):Shih-Kai Lin
論文名稱:以全反射螢光顯微技術結合粒子追蹤測速儀量測高濃度粒子於邊界附近之布朗運動
論文名稱(外文):Experimental Study on the Near-Wall Brownian Behavior of High Volume Fraction Nano Particles using TIRF-enhanced PTV
指導教授:沈弘俊沈弘俊引用關係
口試委員:吳光鐘李雨田維誠
口試日期:2014-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:77
中文關鍵詞:布朗運動全螢光反射顯微技術微粒子追蹤測速儀邊界效應體積分率
外文關鍵詞:Brownian motionTotal Internal Reflection Fluorescence Microscopy (TIRFM)micro Particle Tracking Velocimetry (μ-PTV)boundary effectvolume fraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:473
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於科技的進步,結合微機電與生醫技術的生醫感測元件因應而生,而由布朗運動為理論基礎,所建立的新式檢測技術則為本實驗室近年來之目標,此類元件具有操作簡易、製作簡單且價格便宜之優點。於本研究中,針對布朗運動於微流道中運動現象作完整探討,包括布朗運動與邊界距離之討論、邊界表面性質與布朗運動之影響、濃度變化對布朗運動的影響以及環境溶液對於布朗運動之影響,希望可藉由本研究對此新式感測技術進行最佳化設計。本研究進行方式是藉由使用非螢光奈米粒子模擬高濃度情況,再以低濃度螢光粒子置入樣品中以便以粒子追蹤測速儀(PTV)作分析,並且搭配不同環境溶液、表面性質模擬可能遇到之情況。
從實驗中可以看出粒子靠近邊界時受到邊界的影響,布朗運動擴散係數會下降;當樣本中的粒子濃度提高時,直觀來看粒子間的碰撞機率增加導致能量消散更多,造成布朗運動速度下降。此外,表面性質的改變也會使布朗運動擴散係數發生變化,在未來可將此結果應用於建立在布朗運動理論下之新式生醫檢測中,有助於增加其準確度。


In recent years, due to advances in technology, combined with MEMS and biomedical sensing element appeared. Base on the theory of Brownian motion, we established new bio-sensing technology in recent years. Such element has advantages that it’s simple to use, make and low price. In this study, we discuss the phenomena for the Brownian motion in micro-flow channel, including studies on the near-wall Brownian behaviors of particles, high volume fraction effect, how surface modification effects Brownian motion and how environmental solution effects Brownian motion, hope that by this study, we can improve this new sensing technology for optimal design. We use non-fluorescent nanoparticles to simulated high concentrations and use fluorescent particles in low volume fraction to trace the fluid, then use micro-Particle Tracking Velocimetry (PTV) for analysis. Then we change the environmental solutions, do surface modification and mixing different size of particles to simulate the conditions that may be encountered.
From the study, we know that the diffusion coefficient of Brownian motion decreases as the particles near the boundary and high volume fraction. Furthermore, surface modification and sample made by different particles size also change particles Brownian behavior, hope that the results of the study can be used in the Brownian motion-based bio-sensing technology and increasing its accuracy.


口試委員會審定書 #
致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vii
圖目錄 viii
符號目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究方法 3
1-4 論文架構 3
第二章 文獻回顧 5
2-1 布朗運動、邊界效應以及體積濃度影響文獻回顧 5
2-2 全反射螢光顯微技術文獻回顧 6
2-3 粒子影像測速儀/粒子追蹤測速儀文獻回顧 7
第三章 布朗運動 9
3-1 布朗運動及其數學模型 9
3-1-1 前言 9
3-1-2 愛因斯坦關係式 10
3-1-3 朗之文方程式 12
3-2 布朗運動與邊界效應之影響 13
3-3 布朗運動與體積濃度之影響 15
3-4 膠體粒子的布朗運動與沉降平衡 16
第四章 實驗設備與實驗方法 18
4-1 全反射螢光顯微技術 18
4-1-1 前言 18
4-1-2 漸逝波原理介紹 18
4-1-3 螢光粒子的非等向性放射 20
4-1-4 中間層分析 20
4-1-5 全反射螢光顯微鏡 21
4-2 微粒子影像/追蹤測速儀 21
4-2-1 原理 21
4-2-2 微粒子影像/追蹤測速儀實驗設備 23
4-2-2-1 光源裝置................................................................................23
4-2-2-2 影像擷取裝置 24
4-2-2-3 光學顯微鏡 24
4-2-2-4 同步器 24
4-2-2-5 影像分析軟體 25
4-2-2-6 光學路徑架構 25
4-3 咖啡環效應與觀測腔體製作 25
4-4 全反射螢光顯微技術之漸逝波照明深度量測實驗 26
4-5 高濃度奈米粒子樣本配製 26
4-6 視野校正 27
4-7 玻片表面改質 28
第五章 實驗結果與討論 30
5-1 微粒子追蹤測速儀與布朗運動分析 30
5-1-1 影像擷取與視野校正 30
5-1-2 螢光粒子濃度參數之決定 31
5-1-3 其餘觀測限制 32
5-1-4 粒子布朗運動分析 32
5-2 布朗運動與邊界效應之研究 33
5-3 布朗運動與濃度變化之研究 34
5-4 布朗運動與環境溶液之研究 35
5-5 布朗運動與表面改質之研究 36
第六章 結論 37
6-1 結論 37
6-2 未來展望 38
參考文獻 40


Adrian, R. J. (1986). Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimetry. Applied Optics, 25, 3855-3858.
Adrian, R. J. (1986). Multi-Point Optical Measurements of Simultaneous Vectors in Unsteady Flow—a Review. International Journal of Heat and Fluid Flow, 7, 127-145.
Adrian, R. J., &; Westerweel, J. (2011). Particle Image Velocimetry. Cambridge University.
Baek, S. J., &; Lee, S. J. (1996). A New Two-Frame Particle Tracking Algorithm Using Match Probability. Experiments in Fluids, 22, 23-32.
Batchelor, G. K., &; Green, J. T. (1972). Hydrodynamic Interaction of Two Small Freely-moving Spheres. Journal of Fluid Mechanics, 56, 375-400.
Beenakker, C. W. J. (1984). The Effective Viscosity of a Concentrated Suspension of Spheres. Physica 128A, 48-81.
Beenakker, C. W. J., &; Mazur, P. (1983). Self-Diffusion of Spheres in a Concentrated Suspension Physica 120A, 388-410.
Brenner, H. (1961). The Slow Motion of a Sphere through a Viscous Fluid Towards a Plane Surface. Chemical Engineering Science, 16, 242-251.
Brinkman, H. C. (1952). The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics, 20, 571.
Cowen, E. A., &; Monismith, S. G. (1997). A Hybrid Digital Particle Tracking Velocimetry Technique. Experiments in Fluids, 22, 199-211.
Dufresne, E. R., Squires, T. M., Brenner, M. P., &; Grier, D. G. (2000). Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface. Physical Review Letters, 85, 3317-3320.
Ding, L., Jing-Yuan, D., Yue-Hong, Q., &; Hai-Ping, F. (2007). Large Slip Length over a Nanopatterned Surface. CHIN.PHYS.LEFT, 24, 1021-1024.
Durlofsky, L., Brady, J. F., &; Bossis, G. (1987). Dynamic simulation of hydrodynamically interacting particles. Journal of Fluid Mechanics, 180, 21-49.
Fan, Y. J., Sheen, H. J., Liu, Y. H., Tsai, J. F., Wu, T. H., Wu, K. C., &; Lin, S. (2010). Detection of C-reactive Protein in Evanescent Wave Field Using Microparticle-Tracking Velocimetry. Langmuir, 26, 13751-13754.
Fan, Y.-J., Sheena, H.-J., Hsua, C.-J., Liua, C.-P., Shiming Lina, b., &; Wua, K.-C. (2009). A Quantitative Immunosensing Technique Based on the Measurement of Nanobeads'' Brownian Motion. Biosensors and Bioelectronics 25, 688-694.
Fujita, I. e. a. (1988). Large-Scale Particle Image Velocimetry for Flow Analysis in Hydraulic Engineering Applications. Journal of Hydraulic Research, 36(397-414).
Goldman, A. J., Cox, R. G., &; BRENNER, H. (1967). Slow Viscous Motion of a Sphere Parallel to a Plane Wall-I Motion through a Quiescent Fluid. Chemical Engineering Science, 22, 637-651.
Goldman, A. J., Cox, R. G., &; Brenner, H. (1967). Slow Viscous Motion of a Sphere Parallel to a Plane Wall-II Couette flow. Chemical Engineering Science, 22, 653-660.
Jiang, J., Oberdo‥rster, G. n., &; Biswas, P. (2009). Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies. Journal of Nanoparticle Research, 11, 77-89.
Jin, S., Huang, P., Park, J., Yoo, J. Y., &; Breuer, K. S. (2004). Near-surface Velocimetry using Evanescent Wave Illumination. Experiments in Fluids, 37(6), 825-833.
Joshi, S. R. (2009). Improvement of Algorithm in the Particle Tracking Velocimetry Using Self-Organizing Maps. Journal of the Institute of Engineering, 7.
Kao, M. H., &; Yodh, A. G. (1993). Observation of Brownian Motion on the Time Scale of Hydrodynamic Interactions. Physical Review Letters, 70, 242-245.
Kao, M. H., Yodth, A. G., &; Pine, D. J. (1993). Observation of Brownian Motion on the Time Scale of Hydrodynamic Interactions. Physical Review Letters, 70, 242-245.
Keane, R. D., &; Adrian, R. J. (1992). Theory of Cross-Correlation Analysis of Piv Images. Applied Scientific Research, 49, 192-215.
Keane, R. D., Adrian, R. J., &; Zhang, Y. (1998). Super-Resolution Particle Imaging Velocimetry. Measurement Science and Technology, 6, 754-768.
Kihm, K. D. e. a. (2004). Near-Wall Hindered Brownian Diffusion of Nanoparticles Examined by Three-Dimensional Ratiometric Total Internal Reflection Fluorescence Microscopy (3-D R-Tirfm). Experiments in Fluids, 37, 811-824.
Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H., &; Han, J. (2007). Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel. Physical Review Letters, 99, 044501.
Lin, B., Yu, J., &; Rice, S. A. (2000). Direct Measurements of Constrained Brownian Motion of an Isolated Sphere Between Two Walls. PHYSICAL REVIEW E, 62, 3909-3919.
Lourenco, L., &; Krothapalli, A. (1987). The Role of Photographic Parameters in Laser Speckle or Particle Image Displacement Velocimetry. Experiments in Fluids, 5, 29-32.
Medina-Noyola, M. (1988). Long-Time Self-Diffusion in Concentrated Colloidal Dispersions. Physical Review Letters, 20, 2705-2708.
Melling, A. (1997). Tracer Particles and Seeding for Particle Image Velocimetry. Measurement Science and Technology, 8, 1406-1416.
Pak, B. C., &; Cho, Y. I. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Experimental Heat Transfer, 11, 151-170.
Priezjev, N. V., Darhuber, A. A., &; Troian, S. M. (2005). Slip Behavior in Liquid Films on Surfaces of Patterned Wettability: Comparison between Continuum and Molecular Dynamics Simulations. PHYSICAL REVIEW E, 71, 0416081-04160811.
Richard, A. L. J. (2002). Soft Condensed Matter, 1st Ed. Oxford University.
Scheller, F., &; Schubert, F. (1992). Biosensor.
Ye, X., Narayanan, T., Tong, P., Huang, J. S., Lin, M. Y., Carvalho, B. L., &; Fetters, L. J. (1996). Depletion Interactions in Colloid-Polymer Mixtures. PHYSICAL REVIEW E, 54, 6501-6510.
Yunker, P. J., Still, T., Lohr, M. A., &; Yodh, A. G. (2011). Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions. Nature, 476, 308-311.

Zettner, C. M., &; Yoda, M. (2003). Particle Velocity Field Measurements in a near-Wall Flow Using Evanescent Wave Illumination. Experiments in Fluids, 34, 115-121.
王子瑜、曹恒光. "布朗運動、郎之萬方程式、與布朗動力學." 物理雙月刊第廿七卷第三期 pp. 456-460, 2005.
范育睿. "利用微粒子追蹤測速儀量測c反應蛋白之布朗運動及其反應檢測." 碩士論文. 國立台灣大學, 2008.
孫立志. "基於多尺度德光流算法在piv中的應用." 大連理工大學, 2006.
陳正育. "應用粒子布朗運動檢測技術結合漸逝波照明於血輕中量測c反應蛋白濃度." 碩士論文. 國立台灣大學, 2012.
廖亭雅. "以布朗運動檢測技術應用於齒舌蘭輪斑病毒檢測." 碩士論文. 國立台灣大學, 2013.
呂仁傑. "量測邊界層附近高濃度奈米粒子之布朗運動." 碩士論文. 國立台灣大學, 2012.
盧建、李榮先、周力行. "射流稀疏顆粒圖像piv算法應用." 中國化工學報 Vol. 56, pp. 1206-1208, 2005.
顏毅廣. "全反射螢光顯微技術應用於蛋白質分子之即時偵測與操控. " 碩士論文. 國立台灣大學, 2004.
邱宗凱、錢正浩、連偉男、林奇宏. "全反射螢光顯微術於生物物理的應用." 物理雙月刊第廿四卷第三期 pp. 436-442, 2001.
吳家軒. "以全反射式螢光顯微技術觀察胞吞作用所牽連之小範圍鈣離子變化. " 碩士論文. 國立陽明大學, 2005.
王冠斐、賴山強. "膠體中的物理簡介." 物理雙月刊第廿三卷第四期 pp. 482-487, 2001.
龐寧寧. "漫談布朗運動." 物理雙月刊第廿八卷第一期 pp. 2-11, 2006
陳志強. "亞佛加厥常數與布朗運動." 物理雙月刊第廿七卷第三期 pp. 467-469, 2005


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top