跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昆明
研究生(外文):Kun-Ming Lin
論文名稱:模擬與分析裸露河床地對空氣中懸浮微粒濃度之影響
論文名稱(外文):Simulating and Analyzing the Effects on Concentration of Airborne Particulates derived from Unvegetated Riverbanks
指導教授:張能復張能復引用關係
口試委員:鄭福田江旭程張艮輝林清和
口試日期:2014-07-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:133
中文關鍵詞:土石流PM10莫拉克颱風揚塵模式揚塵潛勢
外文關鍵詞:LandslidesPM10Typhoon MorakotDeflation modelDust potential
相關次數:
  • 被引用被引用:3
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區為容易遭受颱風和地震等天然災害的地區,這些天然災害亦會伴隨著土石流的災害,土石流裡會挾帶著大量的泥砂,會隨著河流的沉積到下游處。當大氣條件為乾燥並伴隨著較強烈的東北季風時,往往會造成裸露河床地區附近懸浮微粒(PM10)濃度的升高而危害人體之健康。2009年經過莫拉克颱風之後,一些鄰近河川下游地區的空氣品質測站測得比往年高的PM10濃度,故本研究為欲了解莫拉克颱風對這些河川下游地區空氣品質測站PM10的影響。本研究為建立一揚塵之網格模式,首先比對台東空氣品質測站2004、2005年10 ~ 12月模擬與觀測值之結果,了解模式模擬PM10之可信度,接著迴歸2001 ~ 2008年10 ~ 12月之揚塵潛勢與PM10之平均濃度,顯示兩者有很高的相關性(0.78),而截距28.7可表示在沒有揚塵情況時,台東測站的PM10背景濃度。接著把2009年10 ~ 12月的揚塵潛勢代入先前迴歸的方程式中,求得的PM10濃度為37.98 μg/m3, 但實際上台東測站2009年10 ~ 12月的平均濃度為61.67 μg/m3,而兩者的差異亦可解釋為莫拉克颱風後,帶來較往年多的砂石,沉積到河川下游處,故在揚塵潛勢沒有太大變化下,2009年 10 ~ 12 月卻監測到較高的PM10濃度。
除了了解莫拉克風災後對河川下游地區的空氣品質測站PM10的影響,本模式亦測試其應用在複雜地形的能力,可以看出在花蓮溪的揚塵沿著花東縱谷內傳輸。在垂直方向上,因揚塵模式只計算揚塵的通量,並沒有考慮垂直速度,故在垂直方向只靠擴散效應影響,故影響高度約在混合層高度附近,多在800公尺以下。
本研究亦利用濁水溪附近高密度的空氣品質監測站,了解濁水溪附近揚塵主要影響區域為崙背、麥寮和褒忠地區等,原因為河川揚塵為大顆粒粒徑為主,故較易沉降致使影響範圍不大。而在高風速下,除了在濁水溪鄰近區域有高PM10之濃度之外,其他地區可能因為料堆場或是廢棄的農地等,致使PM10濃度升高。


Landslides frequently occur during large earthquakes and storms in Taiwan, supplying large volumes of sediment to downslope areas. When coupled with the intense northeast monsoon over Taiwan in the dry winter season, this can lead to high concentrations of airborne particulates that are hazardous to human health. Air quality monitoring stations near unvegetated riverbanks recorded high concentrations of particulate matter less than 10 microns (PM10) after Typhoon Morakot in 2009. The objective of this study was, therefore, to analyze the effects on air quality of sediment caused by the typhoon. A deflation model was simulated, and the resulting estimates were compared with observed data from the Taitung monitoring station for 2004 and 2005. The relationship of dust flux to average atmospheric dust concentration was analyzed for October to December 2001 ~ 2010. Analysis showed that the 2001 ~ 2008 data are highly correlated (0.78) with the average concentration. The intercept of 28.7 represented the background concentration with no dust emission, from October to December of 2001 to 2008. Based on the dust potential in 2009, the average PM10 concentration would be 37.98 μg/m3; however, the measured concentration was 61.67 μg/m3 from October to December. This suggests the strong influence of dust re-suspended from unvegetated riverbanks by Typhoon Morakot.
Also, this model was very ideal when applying the transportation mechanism in the complex terrain. The pollution air mass could move alone the East Rift Valley. In the deflation module, due to lack the vertical velocity of the dust emission, the influence height of dust pollution is only the affected by the mechanism of vertical diffusion in the mixing height. In general, influence height of dust pollution is about 200-800 meters.
From the contour maps of high density air quality stations near Jhuoshuei River, main influence area is from Lunbei station to Mailiao and Baozhong Station. Under high-speed winds, besides bare lands of the river, there were also other PM10 emission sources, such as pile storage, blocks yards and bare or abandoned farmlands. Even the monitoring stations are not closed the Jhuoshuei River, sometimes they read high PM10 concentration.


Abstract I
Table of Contents V
List of tables IX
List of figures XI
Chapter 1 Introduction 1-1
Chapter 2 Literature Review 2-1
2.1 The Sources and Characteristics of Particulate Pollutants 2-1
2.2 The Mechanism of Fugitive Dust through Wind Erosion 2-3
2.3 The Physical Effects of the Atmosphere 2-7
2.3.1 Wind Field Analysis 2-8
2.3.2 Meteorological Parameter Processing 2-10
2.3.2.1 Atmospheric Stability 2-11
2.3.2.2 Monin-Obukhov Length Scale 2-11
2.3.2.3 Friction Velocity 2-14
2.3.2.4 Height of the Mixing Layer 2-16
2.3.2.5 Diffusion Coefficient 2-17
2.4 Dry Deposition 2-20
2.4.1 Aerodynamic Resistance 2-23
2.4.2 Quasi-laminar Layer Resistance 2-24
2.4.3 Gravity Settling Velocity 2-24
Chapter 3 Research Method 3-1
3.1 Model Design 3-1
3.1.1 Model Theory and Assumptions 3-1
3.1.2 Model Structure 3-2
3.1.2.1 Main Program 3-3
3.1.2.2 Bott''s Advection Scheme 3-4
3.1.2.3 The Crank-Nicolson Method 3-6
3.1.2.4 The meteorological Module 3-7
3.1.2.5 Deflation Module 3-10
3.1.2.6 Deposition Module 3-14
3.1.2.7 Geographic Information Module 3-14
3.1.2.8 Initial and Boundary Module 3-15
3.1.2.9 Model Related Settings 3-16
3.2 Research Domain and Data Selection 3-18
3.3 Analyzing the Policy-required Air Quality Monitoring Station 3-21
Chapter 4 Result and Discussion 4-1
4.1 Simulation for the Deflation Dust from Unvegetated Riverbanks 4-1
4.1.1 Results of Transport Simulation 4-1
4.1.2 Results of Long-term Simulation 4-7
4.1.3 Influence of Typhoon Morakot on PM10 4-16
4.1.4 Brief Summary for Simulating the Dust Deflation 4-19
4.2 Analyzing the Policy-required Air Quality Monitoring Station 4-24
Chapter 5 Conclusion 5-1
References R-1
Appendix A The Phenomenon of the Dust from Hualien River Transport in the East Rift Valley A-1
Appendix B The Hourly Contour Maps of PM10 Concentration near Jhuoshuei River B-1


Allwine KJ, Whiteman CD (1985) MELSAR: A mesoscale air quality model for complex terrain: Volume 1–Overview, technical description and user’s guide. Pacific Northwest Laboratory, Richland, Washington

Bagnold RA (1941) The physics of blown sand and desert dunes. London

Barnes SL (1973) Mesoscale objective analysis using weighted time-series observations. NOAA Tech Memo. ERL NSSL-62, National Severe Storms Laboratory, Norman, OK 73069

Barnum BH, Winstead NS, Wesely J et al (2004) Forecasting dust storms using the CARMA-dust model and MM5 weather data. Environ Modell Softw 19(2): 129–140

Belly PY (1964) Sand Movement by Wind. Washington: US Army CERC Tech Memo 1: 1-38

Bott A (1989) A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon Wea Rev 117:1006–1015

Chang LFW (1980) A comparative study of the closure scheme of the planetary boundary layer model. B Geo 20

Chang, LFW, Hwang RR, Lin SC (1983) A variational-kinematical model for over complex terrain. Ann Rept Inst Phys Acad Sin 13: 89–102

Chen CY, Chen LK, Yu FC, Lin SC, Lin YC, Lee CL, Wang YT, Cheung KW (2008) Characteristics analysis for the flash flood-induced debris flows. Nat Hazards 47:245–261

Chen CY, Lin LY, Yu FC, Lee CS, Tseng CC, Wang AX, Cheung KW (2007) Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Nat Hazards 40(2):447–461

Crank J, Nicolson P (1947) A practical method for numerical solution of partial differential equations of heat conduction type, Proc Cambridge Philos Soc, 43:50-67.

Dadson SJ, Hovius N, Chen HW et al (2003) Links between erosion, runoff variability, and seismicity in the Taiwan orogen. Nature 426:648–651

Draxler RR, Gillette DA, Kirkpatrick JS, Heller J (2001) Estimating PM10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia. Atmos Environ 35(25):4315–4330

Durst F, Milojevic D, Schonung B (1984) Eulerain and Lagrangian predictions of particulate two-phase flows: a numerical study. Appl. Math. Modeling, 8:101-115

Eldridge DJ, Leys JF (2003) Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. J Arid Environ 53:457–466

Fryrear DW, Saleh A, Bilbro JD et al (1998) Revised Wind Erosion Equation (RWEQ). Wind Erosion and Water Conservation Research Unit, USDA-ARS, Southern Plains Area Cropping Systems Research Laboratory. Technical Bulletin No. 1

Gillette DA, Passi R (1988) Modeling dust emission caused by wind erosion. J Geophys Res 93:14233–14242

Gillette D, Ono D, Richmond KA (2004) Combined modeling and measurement technique for estimating windblown dust emissions at Owens (dry) Lake, California. J Geophys Res 109 F01003

Ginoux P, Prospero JM, Torres O, Chin M (2004) Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic Oscillation. Environ Modell Softw 19:113–128

Golder KL (1972) Relations among stability parameters in the surface layer. Boundary Layer Meterol 3, 47-58

Goossens D (2004) Effect of soil crusting on the emission and transport of wind-eroded sediment: Field measurements on loamy sandy soil. Geomorphology 58:145–160

Goswami BN1, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314: 1442– 1445

Gregory JM, Wilson GR, Singh UB, Darwish MM (2004) TEAM: Integrated, process-based wind-erosion model. Environ Modell Softw 19(2): 205–215

Grini A, Myhre G, Zender CS, Isaksen ISA (2005) Model simulations of dust sources and transport in the global atmosphere: Effects of soil erodibility and wind speed variability. J Geophys Res 110 D02205

Hagen LJ (2004) Evaluation of the Wind Erosion Prediction System (WEPS) erosion submodel on cropland fields. Environ Modell Softw 19(2):171–176

Ishizuka M, Mikami M, Yamada Y, et al. (2005) An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert. J Geophys Res, 110: D18S03

Ishizuka M, Mikami M, Leys J, et al. (2008) Effects of soil moisture and dried raindroplet crust on saltation and dust emission. J Geophys Res 113 D24212

Ishizuka M, Mikami M, Yamada Y, et al. (2009) Threshold friction velocities of saltation sand particles for different soil moisture conditions in the Taklimakan Desert. Sola 5: 184-187

Iversen JD, Rasmussen KR (1994) The effect of surface slope on saltation threshold. Sedimentology 41(4): 721-728

Karl TR, Knight RW (1998) Secular trends of precipitation amount, frequency and intensity in the United States. Bull Am Meteorol Soc 79:233–241

Kuo CY, Lin CY, Huang LM, Wang S, Shieh PF, Lin YR, Wang JY (2010) Spatial variations of the aerosols in river dust episodes in central Taiwan. J Hazard Mater 179:1022–1030

Kurosaki Y, Mikami M (2007) Threshold wind speed for dust emission in East Asia and its seasonal variations. J Geophys Res 112 D17202

Lancaster N, Baas ACW (1998) Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California. Earth Surf Proc Land 23:69–82

Lasserre F, Cautenet G, Alfaro SC et al (2005) Development and validation of a simple mineral dust source inventory suitable for modelling in North Central China. Atmos Environ 39: 3831–3841

Lau, KM, Wu HT (2007) Detecting trends in tropical rainfall characteristics, 1979 – 2003. Int J Climatol 27: 979 – 988

Lee HN, Igarashi Y, Chiba M, Aoyama M, Hirose K, Tanaka T (2006) Global model simulations of the transport of Asian and Sahara dust: Total deposition of dust mass in Japan. Water Air Soil Poll 169(1–4)137–166

Li XL, Zhang HS (2011) Research on threshold friction velocities during dust events over the Gobi Desert in northwest China. J Geophys Res 116 D20210

Lin JW (2013) An empirical correlation between the occurrence of earthquakes and typhoons in Taiwan: A statistical multivariate approach. Nat Hazards 65(1):605–634

Lin JW, Chen CW, Peng CY (2012) Potential hazard analysis and risk assessment of debris flow by fuzzy modeling. Nat Hazards 64:273–282

Lin CY, Chang ML, Chuan CW (2009) Effects of aeolian dust on the fine airborne particles (PM10) at the estuary of Zhuoshui River. Journal of soil and water conservation 41(3):285-296


Liu M, Westphal DL, Wang S et al (2003) A high-resolution numerical study of the Asia dust storms of April 2001. J Geophys Res 108 (D23):8653

Lu H, Shao YP (2001) Toward quantitative prediction of dust storms: An integrated wind erosion modeling system and its applications. Environ Modell Softw 16(3):233–249

McTainsh GH, Leys JF (1993) Wind erosion. In: McTainsh GH, Boughton WC (eds) Land Degradation Processes in Australia. Longman-Cheshire, Melbourne

McTainsh GH, Lynch AW (1996) Quantitative estimates of the effect of climate change on dust storm activity in Australia during the Last Glacial Maximum. Geomorphology 17:263–271

Miles JR, McTainsh GH (1994) Wind erosion and land management in the mulga lands of Queensland. Aust J Soil Water Conserv 7:41–45

Monin AS, Obukhov AM (1954) Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere Trans Geophys Inst Akad Nauk USSR 151:163–187

O’Brien JJ (1970) A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J Atmos Sci 27:1213-1215

Okin GS, Gillette DA (2004) Modelling wind erosion and dust emission on vegetated surfaces. In: Kelly R, Drake N, Barr S (eds) Spatial modelling of the terrestrial environment. John Wiley and Sons, pp 137–156

Owen RP (1964) Saltation of uniform grains in air. J Fluid Mech 20:225–242

Pasquill F (1961) The estimation of the dispersion of windborne material. Meteorol. Magazine, 90, 33-49

Pleim J, Venkatram A, Yamartino RJ (1984) ADOM/TADAP model development program. Volume 4. The dry deposition model. Ontario Ministry of the Environment. Rexdale, Ontario, Canada

Ratto CF, Festa R, Romeo C, Frumento OA, Galluzzi M (1994) Mass-consistent models for wind fields over complex terrain: The state of the art. Environ Softw 9:247–268

Van Pelt RS, Zobeck TM, Potter KN, Stout JE, Popham TW (2004) Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events. Environ Modell Softw 19(2):191–198

Villasenor R, Lopez-Villegas MT, Eidels-Dubovoi S, Quintanar A, Gallardo JC (2003) A mesoscale modeling study of wind-blown dust on the Mexico City basin. Atmos Environ 37(18):2451–2462

Saxton K, Chandler D, Stetler L, Lamb B, Claiborn C, Lee B-H (2000) Wind erosion and fugitive dust fluxes on agricultural lands in the Pacific Northwest. Trans ASAE 43(3):623–630

Seinfeld JH (1988) Atmospheric chemistry and physic of air pollution. John Wiley &; Sons, New York

Shao YP, Lu H (2000) A simple expression for wind erosion threshold friction velocity. J Geophys Res 105(D17):22437–22443

Shaw W, Allwine KJ, Fritz BG, Rutz FC, Rishel JP, Chapman EG (2008) An evaluation of the wind erosion module in DUSTRAN. Atmos Environ 42:1907–1921

Shinoda M, Kimura R, Mikami M, et al. (2010) Characteristics of dust emission in the Mongolian steppe during the 2008 DUVEX intensive observational period. SOLA 6: 9-12

Slinn SA, Slinn WGN (1980) Prediction for particle deposition on natural water. Atoms Env 14:1013–1016

Slinn WGN (1982) Predictions for particle depositions to vegetative canopies,Atmos. Env. 16: 1785-1794


Stout JE, Zobeck TM (1996) The Wolfforth field experiment: A wind erosion study. Soil Sci 161(9): 616-632

Stout JE (1998) Effect of averaging time on the apparent threshold for aeolian transport. J Arid Environ 39(3): 395-401

Taichung EPB (2013) Project of Prevention and control the riverbed fugitive dust in Taichung City. P0361

Taiwan EPA (2014) Analysis of the causes of fugitive dust at the downstream of Jhuoshuei River. Department of Environmental Monitoring and Information Management Press Release

Tanaka TY, Chiba M (2006) A numerical study of the contributions of dust source regions to the global dust budget. Global Planet Change 52(1–4):88–104

Tsai F, Hwang JH, Chen LC, Lin TH (2010) Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat Hazards Earth Syst Sci 10:2179–2190, doi:10.5194/nhess-10-2179-2010

Tseng CY (1997) Meteorological Data Assimilation. Translation and
Compilation Center, Taipei

Turner DB (1969) Workbook of atmospheric diffusion estimates. U.S. EPA, Report 999-AP-26, Washington, D.C

Wang JJ, Ling HI (2009) Relationships between typhoon types and debris flow disasters in Taiwan. Nat Hazards 54(2):373–394

Wang Z, Ueda H, Huang M (2000) A deflation module for use in modeling long-range transport of yellow sand over East Asia. J Geophys Res 105(D22):26947–26960

Webb NP, McGowan HA, Phinn SR, McTainsh GH (2006) AUSLEM (AUStralian Land Erodibility Model): A tool for identifying wind erosion hazard in Australia. Geomorphology 78:179–200
Whitby K.T. and G.M. Sverdrup (1980) California Aerosols: Their Physical and Chemical Characteristics. Adv Environ Sci Technol 10:477–517

Yen CL, Loh CH, Chen LC, Wei LY, Lee WC, Ho HY (2006) Development and implementation of disaster reduction technology in Taiwan. Nat Hazards 37:3–21

Zhenxin S (2004) A numerical simulation of dust storms in China. Environ Modell Softw 19(2):141–151


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊