跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 12:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王安琪
研究生(外文):An-Chi Wang
論文名稱:鐵型活性碳催化過硫酸鹽應用於染料RB19之降解
論文名稱(外文):Degradation of dye Reactive Blue 19 by Iron-Activated Carbon Catalyzed Persulfate
指導教授:駱尚廉駱尚廉引用關係
指導教授(外文):Shang-Lien Lo
口試委員:張慶源劉雅瑄
口試委員(外文):Ching-Yuan ChangYa-Hsuan Liou
口試日期:2013-06-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:82
中文關鍵詞:催化過硫酸鹽高級氧化活性碳&;#33981;&;#37260;染料
外文關鍵詞:CatalyzePersulfateAOPsActivated carbonAnthraquninone dyeIron
相關次數:
  • 被引用被引用:1
  • 點閱點閱:496
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過硫酸鹽因其會產生高反應性的硫酸根自由基(&;#12310;SO_4&;#12311;^(‧-))與氫氧根自由基(‧OH)而具有氧化有機物的能力,為高級氧化處理中新興的強氧化劑。未活化的過硫酸鹽對污染物的反應較慢,無法快速氧化有機物,因此本研究利用鐵改質後的活性碳催化過硫酸鹽,進行染料RB19之降解,並藉由改變鐵披覆量、過硫酸鹽劑量、鐵型活性碳劑量、溶液初始pH值(3、7、10)以及反應溫度(25、35、45 ℃),比較過硫酸鹽系統、鐵型活性碳系統、鐵型活性碳催化過硫酸鹽之結合系統對染料去除能力差異。
實驗結果顯示在過硫酸鹽系統當中過硫酸鹽加入劑量、溫度的提高都有助於RB19去除率的提升,而在高pH條件下有利於強氧化還原能力的‧OH生成,染料降解效果較好。鐵型活性碳的物化分析結果顯示,經過鐵披覆的處理之後,會降低其比表面積,減少吸附及活性位置,造成RB19去除率的降低;另外此單系統當中最佳鐵披覆量為1%,且其對染料的去除機制可符合Intraparticle diffusion model及Pseudo-second-order kinetic model。
鐵型活性碳催化過硫酸鹽的結合系統中,染料去除率會隨著過硫酸鹽劑量、溫度的增加而上升,但鐵型活性碳的披覆量與劑量則並非越多越好,原因是加入過量鐵型活性碳會使Fe2+增加過多,短時間內消耗掉&;#12310;SO_4&;#12311;^(‧-),抑制反應進行。本實驗的最佳操作條件為PS/RB19=50,1%Fe/AC加入量為0.5 g/L,溶液pH為10並控溫在45 ℃,反應時間一小時過後,RB19的去除率可達95.68%。
在室溫下,藉由單系統與結合系統比較結果可觀察出明顯的加成效果,因此可證明本系統非常適合用於處理染料廢水,在不易加溫的條件下,只要利用觸媒的添加,即可有利於過硫酸鹽的催化。


Persulfate can be thermally or chemically catalyzed to produce sulfate and hydroxyl free radicals which have very powerful oxidation ability. These advantages of being the strongest oxidants make persulfate a promising choice among the advanced oxidation processes (AOPs) for treating organic pollutants. Reactions of persulfate are generally slow at ambient temperature, so we use Iron-modified activated carbon to be the activator of PS to accelerate the degradation of anthraquinone dye RB19. In this study, we investigated the effect of iron coated ratios, dosages of persulfate and Fe/AC, initial solution pH(3, 7 and 10), temperature(25, 35 and 45 ℃) on the RB19 removal. In addition, the difference of the degradation potential between three systems: PS, Fe/AC, Fe/AC+PS were also investigated.
In PS system, the removal efficiency of RB19 increased with higher PS dosage and higher temperature. The alkaline pH is more favorable to the RB19 degradation because this condition will make PS decomposed to produce ‧OH which has higher redox potential. The surface characterization of Fe/AC showed that the specific surface area of AC decreased with more iron coated. With the decrease of adsorption and activation position, the removal ratio of RB19 would reduce. Furthermore, the optimum iron coated ratio was 1% and the removal process followed the Intraparticle diffusion model or Pseudo-second-order kinetic model in Fe/AC system.
In Fe/AC+PS system, the removal efficiency of RB19 increased with higher PS dosage and higher temperature. But excessive dosage of Fe/AC would inhibit the catalytic ability because Fe2+ will consume the produced sulfate radicals. There existed a remarkable synergistic effect in combined system which can remove 95.68% of RB19 under optimum operational conditions of 0.5g/L 1%Fe/AC, PS/RB=50, pH 10, 45℃.


摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究緣起 1
1.2研究目的及內容 2
第二章 文獻回顧 3
2.1過硫酸鹽 3
2.1.1過硫酸鹽物化特性 3
2.1.2過硫酸鹽溶於水中之反應 3
2.1.3金屬活化過硫酸 6
2.1.4過硫酸鹽實際應用 8
2.2活性碳吸附與活化氧化劑理論 11
2.2.1吸附理論 11
2.2.2吸附動力學與熱力學 13
2.2.3活性碳結合氧化劑之實際應用 15
2.3染料 18
2.3.1染料特性簡介 18
2.3.2活性藍19(Reactive Blue 19) 19
第三章 實驗方法與內容 21
3.1研究架構 21
3.2實驗材料 23
3.2.1實驗試劑 23
3.2.2金屬披覆活性碳製備 24
3.3實驗方法 25
3.3.1過硫酸鹽降解RB 19實驗 25
3.3.2鐵型活性碳去除RB 19實驗 26
3.3.3過硫酸鹽與鐵型活性碳結合之染料降解實驗 26
3.3.4過硫酸鹽與不同金屬參雜活性碳結合系統 26
3.4實驗分析方法 27
3.4.1場發射掃描式電子顯微鏡 27
3.4.2比表面積與孔洞分析測量儀 28
3.4.3紫外/可見光光譜儀 29
3.4.4離子層析儀 29
第四章 結果與討論 30
4.1過硫酸鹽降解RB 19實驗 30
4.1.1過硫酸鹽劑量效應 30
4.1.2 pH效應 32
4.1.3溫度效應 35
4.1.3過硫酸鹽降解RB19實驗結果 36
4.2鐵型活性碳去除RB 19實驗 37
4.2.1鐵型活性碳之物化分析 37
4.2.2鐵披覆活性碳比例效應 41
4.2.3鐵型活性碳pH效應 43
4.2.4鐵型活性碳劑量效應 49
4.2.5溫度效應 51
4.3鐵型活性碳催化過硫酸鹽降解RB 19實驗 53
4.3.1過硫酸鹽劑量效應 53
4.3.2鐵披覆活性碳比例效應 55
4.3.3鐵型活性碳劑量效應 56
4.3.4溫度效應 58
4.3.5結合系統機制探討 60
4.3.6鐵型活性碳重複使用活性測試 63
4.4過硫酸鹽與不同金屬披覆之活性碳結合實驗 65
第五章 結論與建議 68
5.1結論 68
5.2建議 69
參考文獻 70
附錄 76


[1]. House, D.A. (1962) Kinetics and mechanism of oxidations by peroxydisulfate Chemical Reviews. 62(3), 185-200.
[2]. Kolthoff, I.M. and Miller, I.K. (1951) The chemistry of persulfate.1. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society. 73(7), 3055-3059.
[3]. Neta, P., Madhavan, V., Zemel, H., and Fessenden, R.W. (1977) Rate constants and mechanism of reation of SO4- with aromatic-compounds. Journal of the American Chemical Society. 99(1), 163-164.
[4]. Huang, K.C., Couttenye, R.A., and Hoag, G.E. (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere. 49(4), 413-420.
[5]. Behrman, E.J. and Dean, D.H. (1999) Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis. Journal of Chromatography B. 723(1-2), 325-326.
[6]. Green, L. and Masson, O. (1910) The dynamics of the decomposition of persulphuric acid and its salts in aqueous solution. Journal of the Chemical Society. 97, 2083-2099.
[7]. Bartlett, P.D. and Cotman, J.D. (1949) The kinetics of the decomposition of potassium persulfate in aqueous solutions of methanol. Journal of the American Chemical Society. 71(4), 1419-1422.
[8]. Penningt.De and Haim, A. (1968) Stoichiometry and mechanism of chromium(2)-peroxydisulfate reaction. Journal of the American Chemical Society. 90(14), 3700-3704.
[9]. Hayon, E., Treinin, A., and Wilf, J. (1972) Electronic-spectra, photochemistry, and autoxidation mechanism of sulfite-bisulfite-pyrosulfite systems - SO2-, SO3-, SO4-, and SO5- radicals. Journal of the American Chemical Society. 94(1), 47-57.
[10]. Liang, C.J., Wang, Z.S., and Bruell, C.J. (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere. 66(1), 106-113.
[11]. Watts, R.J. and Teel, A.L. (2005) Chemistry of modified Fenton''s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation. Journal of Environmental Engineering-Asce. 131(4), 612-622.
[12]. Travina, O.A., Kozlov, Y.N., Purmal, A.P., and Rod''ko, I.Y. (1999) Synergism of the action of the sulfite oxidation initiators, iron and peroxydisulfate ions. Russian Journal of Physical Chemistry. 73(8), 1215-1219.
[13]. Buxton, G.V., Malone, T.N., and Salmon, G.A. (1997) Reaction of SO4- with Fe2+, Mn2+ and Cu2+ in aqueous solution. Journal of the Chemical Society-Faraday Transactions. 93(16), 2893-2897.
[14]. Buxton, G.V., Barlow, S., McGowan, S., Salmon, G.A., and Williams, J.E. (1999) The reaction of the SO3 center dot- radical with Fe-II in acidic aqueous solution - A pulse radiolysis study. Physical Chemistry Chemical Physics. 1(13), 3111-3115.
[15]. Dogliott.L and Hayon, E. (1967) Flash photolysis of persulfate ions in aqueous solutions. Study of sulfate and ozonide radical anions. Journal of Physical Chemistry. 71(8), 2511-2516.
[16]. Anipsitakis, G.P. and Dionysiou, D.D. (2004) Radical generation by the interaction of transition metals with common oxidants. Environmental Science &; Technology. 38(13), 3705-3712.
[17]. Liang, C., Lee, I.L., Hsu, I.Y., Liang, C.-P., and Lin, Y.-L. (2008) Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere. 70(3), 426-435.
[18]. Le, C., Wu, J.H., Li, P., Wang, X.D., Zhu, N.W., Wu, P.X., and Yang, B. (2011) Decolorization of anthraquinone dye Reactive Blue 19 by the combination of persulfate and zero-valent iron. Water Science and Technology. 64(3), 754-759.
[19]. Bremner, D.H., Burgess, A.E., Houllemare, D., and Namkung, K.C. (2006) Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Applied Catalysis B-Environmental. 63(1-2), 15-19.
[20]. Furukawa, Y., Kim, J.W., Watkins, J., and Wilkin, R.T. (2002) Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science &; Technology. 36(24), 5469-5475.
[21]. Liang, C. and Lai, M.-C. (2008) Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environmental Engineering Science. 25(7), 1071-1077.
[22]. Liang, C.J., Liang, C.P., and Chen, C.C. (2009) pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. Journal of Contaminant Hydrology. 106(3-4), 173-182.
[23]. Oh, S.Y., Kim, H.W., Park, J.M., Park, H.S., and Yoon, C. (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. Journal of Hazardous Materials. 168(1), 346-351.
[24]. Waldemer, R.H., Tratnyek, P.G., Johnson, R.L., and Nurmi, J.T. (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science &; Technology. 41(3), 1010-1015.
[25]. Lau, T.K., Chu, W., and Graham, N.J.D. (2007) The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization and mineralization. Environmental Science &; Technology. 41(2), 613-619.
[26]. Xu, X.R. and Li, X.Z. (2010) Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and Purification Technology. 72(1), 105-111.
[27]. Francisco, R.R. (1998) The role of carbon materials in heterogeneous catalysis. Carbon. 36, 159-175.
[28]. Brunauer, S., Deming, L.S., Deming, W.E., and Teller, E. (1940) On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society. 62, 1723-1732.
[29]. Aharoni, C., Sideman, S., and Hoffer, E. (1979) Adsorption of phosphate ions by collodion-coated alumina. Journal of Chemical Technology and Biotechnology. 29(7), 404-412.
[30]. Lagergren, S. (1898) Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Sevenska Vetenskapsakademiens. Handlingar. 24, 1.
[31]. Ho, Y.S. and McKay, G. (1999) Pseudo-second order model for sorption processes. Process Biochemistry. 34(5), 451-465.
[32]. Acemioglu, B. (2004) Adsorption of Congo red from aqueous solution onto calcium-rich fly ash. Journal of Colloid and Interface Science. 274(2), 371-379.
[33]. Faria, P.C.C., Orfao, J.J.M., and Pereira, M.F.R. (2009) Activated carbon and ceria catalysts applied to the catalytic ozonation of dyes and textile effluents. Applied Catalysis B-Environmental. 88(3-4), 341-350.
[34]. Huang, H.H., Lu, M.C., Chen, J.N., and Lee, C.T. (2003) Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere. 51(9), 935-943.
[35]. Khalil, L.B., Girgis, B.S., and Tawfik, T.A.M. (2001) Decomposition of H2O2 on activated carbon obtained from olive stones. Journal of Chemical Technology and Biotechnology. 76(11), 1132-1140.
[36]. Miller, C.M. and Valentine, R.L. (1995) Hydrogen-peroxide decomposition and quinoline degradation in the presence of aquifer meterial. Water Research. 29(10), 2353-2359.
[37]. Liang, C., Lin, Y.-T., and Shih, W.-H. (2009) Treatment of Trichloroethylene by Adsorption and Persulfate Oxidation in Batch Studies. Industrial &; Engineering Chemistry Research. 48(18), 8373-8380.
[38]. Ramirez, J.H., Maldonado-Hodar, F.J., Perez-Cadenas, A.F., Moreno-Castilla, C., Costa, C.A., and Madeira, L.M. (2007) Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B-Environmental. 75(3-4), 312-323.
[39]. Walling, C. (1975) Fentons reagent revisited. Accounts of Chemical Research. 8(4), 125-131.
[40]. Spacek, W., Bauer, R., and Heisler, G. (1995) Heterogeneous and homogeneous waste-water treatment comparison between photodegradation with TiO2 and the photo-fenton reation. Chemosphere. 30(3), 477-484.
[41]. Al-Asheh, S., Banat, F., and Abu-Aitah, L. (2003) The removal of methylene blue dye from aqueous solutions using activated and non-activated bentonites. Adsorption Science &; Technology. 21(5), 451-462.
[42]. Dantas, T.N.D., Beltrame, L.T.C., Neto, A.A.D., and Moura, M. (2004) Use of microemulsions for removal of color and dyes from textile wastewater. Journal of Chemical Technology and Biotechnology. 79(6), 645-650.
[43]. Dos Santos, A.B., Bisschops, I.A.E., Cervantes, F.J., and van Lier, J.B. (2005) The transformation and toxicity of anthraquinone dyes during thermophilic (55 degrees C) and mesophilic (30 degrees C) anaerobic treatments. Journal of Biotechnology. 115(4), 345-353.
[44]. Gahr, F., Hermanutz, F., and Oppermann, W. (1994) Ozonation - an important technique to comply with new German laws for textile waste-water treatment. Water Science and Technology. 30(3), 255-263.
[45]. PeraltaZamora, P., DeMoraes, S.G., Reyes, J., and Duran, N. (1997) Removal of organic pollutants by coprecipitation with metallic hydroxides and photochemical treatment. Environmental Technology. 18(4), 461-466.
[46]. Yang, C.L. and McGarrahan, J. (2005) Electrochemical coagulation for textile effluent decolorization. Journal of Hazardous Materials. 127(1-3), 40-47.
[47]. Sarria, V., Parra, S., Invernizzi, M., Peringer, P., and Pulgarin, C. (2001) Photochemical-biological treatment of a real industrial biorecalcitrant wastewater containing 5-amino-6-methyl-2-benzimidazolone. Water Science and Technology. 44(5), 93-101.
[48]. Li, G., Zhao, X.S., and Ray, M.B. (2007) Advanced oxidation of orange II using TiO2 supported on porous adsorbents: The role of pH, H2O2 and O3. Separation and Purification Technology. 55(1), 91-97.
[49]. Rajkumar, D., Song, B.J., and Kim, J.G. (2007) Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes and Pigments. 72(1), 1-7.
[50]. Petrucci, E. and Montanaro, D. (2011) Anodic oxidation of a simulated effluent containing Reactive Blue 19 on a boron-doped diamond electrode. Chemical Engineering Journal. 174(2-3), 612-618.
[51]. Andrade, L.S., Ruotolo, L.A.M., Rocha, R.C., Bocchi, N., Biaggio, S.R., Iniesta, J., Garcia-Garcia, V., and Montiel, V. (2007) On the performance of Fe and Fe,F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater. Chemosphere. 66(11), 2035-2043.
[52]. Ozcan, A., Omeroglu, C., Erdogan, Y., and Ozcan, A.S. (2007) Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19. Journal of Hazardous Materials. 140(1-2), 173-179.
[53]. Cicek, F., Ozer, D., Ozer, A., and Ozer, A. (2007) Low cost removal of reactive dyes using wheat bran. Journal of Hazardous Materials. 146(1-2), 408-416.
[54]. Moussavi, G. and Mahmoudi, M. (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials. 168(2-3), 806-812.
[55]. Lizama, C., Freer, J., Baeza, J., and Mansilla, H.D. (2002) Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions. Catalysis Today. 76(2-4), 235-246.
[56]. Tehrani-Bagha, A.R., Mahmoodi, N.M., and Menger, F.M. (2010) Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalination. 260(1-3), 34-38.
[57]. He, Z.Q., Lin, L.L., Song, S., Xia, M., Xu, L.J., Ying, H.P., and Chen, J.M. (2008) Mineralization of CI Reactive Blue 19 by ozonation combined with sonolysis: Performance optimization and degradation mechanism. Separation and Purification Technology. 62(2), 376-381.
[58]. Yu, X.Y., Bao, Z.C., and Barker, J.R. (2004) Free radical reactions involving Cl-center dot, Cl-2(-center dot), and SO4-center dot in the 248 nm photolysis of aqueous solutions containing S2O82- and Cl. Journal of Physical Chemistry A. 108(2), 295-308.
[59]. Liang, C.J., Bruell, C.J., Marley, M.C., and Sperry, K.L. (2004) Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere. 55(9), 1225-1233.
[60]. Matheson, L.J. and Tratnyek, P.G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science &; Technology. 28(12), 2045-2053.
[61]. Rastogi, A., Ai-Abed, S.R., and Dionysiou, D.D. (2009) Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B-Environmental. 85(3-4), 171-179.
[62]. Neyens, E. and Baeyens, J. (2003) A review of classic Fenton''s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials. 98(1-3), 33-50.
[63]. Hussain, I., Zhang, Y.Q., Huang, S.B., and Du, X.Z. (2012) Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chemical Engineering Journal. 203, 269-276.
[64]. Bratsch, S.G. (1989) Stand electrode-potentials and temperature coefficients in water at 298.15K. Journal of Physical and Chemical Reference Data. 18(1), 1-21.
[65]. Yang, S.Y., Yang, X., Shao, X.T., Niu, R., and Wang, L.L. (2011) Activated carbon catalyzed persulfate oxidation of Azo dye acid orange 7 at ambient temperature. Journal of Hazardous Materials. 186(1), 659-666.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊