(3.236.175.108) 您好!臺灣時間:2021/03/01 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭思筠
研究生(外文):Szu-Yun Peng
論文名稱:TFT-LCD 廢玻璃混合轉爐石產製輕質骨材及其特性研究
論文名稱(外文):Manufacturing and Characterization of Lightweight Aggregate from TFT-LCD Waste Glass and Basic Oxygen Furnace Slag
指導教授:李公哲李公哲引用關係
口試委員:王鯤生侯嘉洪
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:114
中文關鍵詞:TFT-LCD 廢玻璃轉爐石輕質骨材游離氧化鈣(Free-CaO)鹼矽反應(Alkali-Silica ReactionASR)
外文關鍵詞:TFT-LCD Waste GlassBlast Oxygen Furnace (BOF) SlagLightweight Aggregate (LWA)Free-CaOAlkali-silica Reaction (ASR)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:253
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以薄膜電晶體液晶顯示器(Thin-film transistor Liquid-crystal Display, TFT-LCD)廢素玻璃與煉鋼副產物轉爐石(Basic Oxygen Furnace slag, BOF slag)以實廠規模產製輕質骨材,研析熱處理溫度對輕質骨材物理特性及化學反應特性的影響,以評估利用TFT-LCD廢素玻璃及轉爐石為原料,是否可產出特性優良且符合商用標準之輕質骨材。
試驗結果顯示,隨熱處理溫度的增加,試體黏滯性玻璃包覆相的黏度將隨之降低,使玻璃化程度越趨完全。當輕質骨材玻璃化程度越高,其吸水率、體密度及容積密度則愈低。筒壓強度呈現先上升後下降之趨勢,當熱處理溫度介於1000°C-1020°C,隨著骨材表面玻璃化程度愈高,筒壓強度則愈高;當熱處理溫度高於1020°C,因孔隙增加及表面開始產生微孔隙,故輕質骨材可承受之強度開始下降。晶相析出量與種類隨著熱處理溫度增加而漸增,能使轉爐石中的游離氧化鈣與其他物質形成鈣長石(Al2CaSi2O8)、頑火輝石((Ca,Mg,Fe)Si2O6)、矽灰石(CaSiO3)與透輝石(CaMgSi2O6)之結晶相,可有效固定並降低73.11%的游離氧化鈣含量。經骨材冷卻段之晶相探討,當後段持溫溫度高於800°C以上時,則具有鹼矽反應(Alkali-silica reaction)特性之方石英(Cristobalite)晶相將隨持溫溫度及時間的增加而大量析出。如欲將產出之輕質骨材應用於輕質混凝土,於冷卻階段應將溫度迅速降低至800°C以下,避免產出方石英影響混凝土試體之耐久性。本研究所產出之輕質骨材,經鹼矽反應性試驗證實屬不具危害性(Innocuous)之骨材,且適用於結構用輕質骨材。當熱處理溫度為1030°C所產出之輕質骨材,體密度為1.37 g/cm3、容積密度為851.96 kg/m3、吸水率為1.12%及筒壓強度為11.98 MPa,除符合輕質骨材之商用規範外,更具有較低吸水率之優勢。
本研究以TFT-LCD廢玻璃混合煉鋼副產物轉爐石,利用圓盤造粒機及旋轉式窯爐成功產製出物理特性與化學反應特性符合商用規範之輕質骨材,並能有效降低游離氧化鈣含量。


The aim of this study was to manufacture the lightweight aggregate (LWA) from a mixture of thin film transistor liquid crystal display (TFT-LCD) waste glass and basic oxygen furnace (BOF) slag in the field prototype scale. Pellets were produced by pelletization then, rapidly sintered and bloated at the temperature between 1000°C and 1040°C by rotary kiln. The effects of thermal treatment condition on the physical and chemical properties of LWA were investigated.
Experimental results indicated that the vetrification of the surface of LWA led to improve its cylindrical compressive strength and lower its water absorption. In addition, the degree of vitrification was increased with temperature increase. The content of free-CaO in LWA was decreased significantly, because the crystallinity of crystalline phase which contained Ca element were increased. LWA was considered innocuous according to the experiment of alkali-silica reaction which included accelerated mortar bar test (ASTM C1260) and the rapid chemical test (ASTM C289). In conclusion, the physical and chemical properties of the LWA which was made of TFT-LCD waste glass and BOF slag complied with the specifications of commercial lightweight aggregate. Therefore, it could be used in the production of the structural lightweight concrete.


摘要 I
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 TFT-LCD 廢玻璃 4
2.1.1 TFT-LCD 產業廢棄物概況 4
2.1.2 成分特性與國內廢玻璃再利用現況 7
2.2 煉鋼爐渣-轉爐石 10
2.2.1 轉爐石來源與概況 10
2.2.2 轉爐石成分特性 13
2.2.3 轉爐石資源化再利用 15
2.3 輕質骨材 18
2.3.1 概述 18
2.3.2 種類 19
2.3.3 發泡機制 21
2.3.4 雛粒製造方法 24
2.3.5 骨材特性 26
2.3.6 廢棄物製成輕質骨材之相關研究 32
2.4 骨材之反應性分析(鹼矽反應) 34
2.4.1 鹼-氧化矽反應概述 34
2.4.2 鹼矽反應於混凝土之潛在損害性 36
第三章 實驗方法與設計 37
3.1 實驗材料與設備 37
3.1.1 實驗材料 37
3.1.2 實驗設備 38
3.1.3 分析儀器 41
3.2 實驗設計 43
3.3 實驗方法 46
3.3.1 廢棄物特性分析 46
3.3.2 配比選擇 47
3.3.3 燒製方法 47
3.3.4 LWA物理性分析 49
3.3.5 LWA反應性分析 52
第四章 結果與討論 56
4.1 廢棄物性質分析 56
4.1.1 成分分析 56
4.1.2 TG/MS產氣分析 58
4.1.3 粒徑分析 62
4.2 配比選擇 65
4.3 熱處理條件對輕質骨材晶相之影響 67
4.3.1 初始成份之晶相分析 67
4.3.2 熱處理溫度與晶相之關聯性 71
4.3.3 骨材冷卻段之晶相探討 72
4.4 熱處理溫度對游離氧化鈣之影響 76
4.5 輕質骨材物理特性分析 77
4.5.1 骨材篩分析 77
4.5.2 熱處理溫度對體密度及吸水率之影響 80
4.5.3 熱處理溫度對容積密度之影響 83
4.5.4 表面玻璃化與容積密度對筒壓強度之影響 85
4.5.5 微觀分析 88
4.5.6 以骨材性能評估商用可行性 93
4.6 輕質骨材反應特性分析 95
4.6.1 鹼矽反應潛能之化學分析 95
4.6.2 鹼矽反應潛能之水泥砂漿棒試驗 97
4.6.3 抗壓強度之影響 99
第五章 結論與建議 108
5.1 結論 108
5.2 建議 110
參考文獻 111


ACI Committee 213. (1999). Guide for Structural Lightweight Aggregate Concrete. (Reapproved,1999).

ASTM International. (Founded 1898). ASTM Standards

Bumanis, G., Bajare, D., Locs, J., &; Korjakins, A. (2013). Alkali-silica reactivity of foam glass granules in structure of lightweight concrete. Construction and Building Materials, 47(0), 274-281.

Cheeseman, C. R., &; Virdi, G. S. (2005). Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling, 45(1), 18-30.

Chen, H.-J., Yang, M.-D., Tang, C.-W., &; Wang, S.-Y. (2012). Producing synthetic lightweight aggregates from reservoir sediments. Construction and Building Materials, 28(1), 387-394.

Chinese National Standards (CNS). (Founded 1935).

Ducman, V., &; Mirti&;#269;, B. (2009). The applicability of different waste materials for the production of lightweight aggregates. Waste Management, 29(8), 2361-2368.

Ducman, V., Mladenovi&;#269;, A., &; &;#352;uput, J. S. (2002). Lightweight aggregate based on waste glass and its alkali–silica reactivity. Cement and Concrete Research, 32(2), 223-226.

Elsharief, A. , Cohen, M. D ., &; Olek, J. (2005). Influence of lightweight aggregate on the microstructure and durability of mortar. Cement and Concrete Research, 35(7), 1368-1376.

Fan, C. S., Huang, C. Y., &; Li, K. C. (2014). Bloating mechanism of the mixture of thin-film transistor liquid-crystal display waste glass and basic oxygen furnace slag. Construction and Building Materials, 66(0), 664-670.

Fernandes, H. R., Tulyaganov, D. U., &; Ferreira, J. M. F. (2009). Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceramics International, 35(1), 229-235.

Gillott, J. E., Duncan, M. G., &; Swenson, E. G. (1973). Alkali-aggregate reaction in Nova Scotia

Huang, C.-H., &; Wang, S.-Y. (2013). Application of water treatment sludge in the manufacturing of lightweight aggregate. Construction and Building Materials, 43(0), 174-183.

Huang, S. C., Chang, F.-C., Lo, S.-L., Lee, M.-Y., Wang, C.-F., &; Lin, J.-D. (2007). Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 144(1–2), 52-58.

Ichikawa, T. (2009). Alkali–silica reaction, pessimum effects and pozzolanic effect. Cement and Concrete Research, 39(8), 716-726. Ichikawa, T., &; Miura, M. (2007). Modified model of alkali-silica reaction. Cement and Concrete Research, 37(9), 1291-1297.

Irabien, A., Viguri, J. R., &; Ortiz, I. (1990). Thermal dehydration of calcium hydroxide.
1. Kinetic model and parameters. Industrial &; engineering chemistry research,
29(8), 1599-1606.

Kourti, I., &; Cheeseman, C. R. (2010). Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass. Resources, Conservation and Recycling, 54(11), 769-775.

Ludmila, D. M. (1983). Handbook of concrete aggregate. (Noyes Publications).

Neville, A. M. (1995). Properties of concrete.

Nippon Slage Association. (2013). Production and uses of Blast Furnace Slag in Japan.

Riley, C. M. (1951). Relation of Chemical Properties to the Bloating of Clays. Journal of the American Ceramic Society, 34(4), 121-128.

Santos, R. M., Ling, D., Sarvaramini, A., Guo, M., Elsen, J., Larachi, F., . . . Van Gerven, T. (2012). Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. Chemical Engineering Journal, 203(0), 239-250.

Shi Caijun. (2004). Steel Slag—Its Production, Processing, Characteristics, and Cementitious Properties. Journal of Materials in Civil Engineering, 16(3), 230-236.

Wang, X. R., Jin, Y. Y., Wang, Z. Y., Nie, Y. F., Huang, Q. F., &; Wang, Q. (2009). Development of lightweight aggregate from dry sewage sludge and coal ash. Waste Management, 29(4), 1330-1335.

Young, S. M. a. J. F. (1981). Concrete. Prentice-Hall,Int.

Zhang, M. H., &; Gjorv, O. E. (1990a). Microstructure of the interfacial zone between lightweight aggregate and cement paste. Cement and Concrete Research, 20(4), 610-618.

Zhang, M. H., &; Gjorv, O. E. (1990b). Pozzolanic reactivity of lightweight aggregates. Cement and Concrete Research, 20(6), 884-890.

中聯資源公司,2010企業社會責任報告書,2010

中聯資源網站資料. http://www.chc.com.tw/product2.html.

工業技術研究院-產業經濟與趨勢研究中心(IEK),IEK產業情報網

王金鐘、李德河,轉爐石作為道路基底層及工程土方材料再生利用之力學特性研究,中國土木水利工程學刊(Vol.17),2005

王順元、陳豪吉,廢棄物資源化再製輕質骨材之應用研究,國立中興大學土木工程學系博士論文,2009

王櫻茂、陳豪吉,台灣地區輕質骨材物理、化學及力學性資料之建立,財團法人台灣營建研究中心,1994

行政院環境保護署,101年度全國事業廢棄物申報統計,2014.05 更新

行業廢棄物管理技術資料,事業廢棄物行業製程參考手冊-鋼鐵冶煉業(89.12版),2000

吳庭安、朱智鴻、溫紹炳、申永輝,回收玻璃粉摻配廢棄物蚵殼製備發泡玻璃研究,&;#37979;冶:中國&;#37979;冶工程學會會刊(211)第73-78頁,2010

林東宏、李公哲,TFT-LCD廢玻璃混合轉爐石爐渣熱處理資材化製成絕緣玻璃陶瓷之研究,臺灣大學環境工程所碩士論文,2010

高瑛紜、劉蘭萍,液晶面板製造業廢棄物資源化現況評析,綠基會通訊,2008

張添晉、王愫懃,廢玻璃與廢燈管資源回收循環,2010

許皓翔、林凱隆、鄭大偉,TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究,國立宜蘭大學碩士論文,2012

黃兆龍,混凝土性質與行為,詹氏書局(初版一刷),1997

黃英傑,TFT-LCD產業廢玻璃資源化介紹,永續產業發展雙月刊(第16期),2004

黃智揚、李公哲,TFT-LCD廢玻璃混合轉爐石資材化燒製輕質骨材之發泡機制研究,臺灣大學環境工程所碩士論文,2013

黃隆昇、林登峰、林平全、許伯良,評估煉鋼爐實應用於瀝青混凝土之性質及現場鋪設成效,中工高雄會刊(vol.2),2010

楊智麟,煉鋼爐渣於瀝青混凝土之應用,中聯資源公司,2009

詹詠翔,養生條件對轉爐石溶出行為之影響,國立成功大學碩士論文,2009

劉國忠,煉鋼爐渣的資源化技術與未來推展方向,環保月刊(第一卷),2001

蕭博仰,水庫淤泥輕質骨材之膨脹氣體生成研析,國立中興大學土木工程學系碩士論文,2006


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔