跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 12:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪淑惠
研究生(外文):Shu-Hui Hung
論文名稱:廢棄鋰離子電池回收處理技術評估
論文名稱(外文):Assessment of Physico-Chemical Processes for Lithium Ion Recovery from Spent Lithium Ion Batteries (LIBs)
指導教授:林正芳林正芳引用關係
口試委員:馬小康 Hsiao-Kan Ma闕蓓德顧洋李文智
口試委員(外文):Hsiao-Kan Ma
口試日期:2014-07-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:153
中文關鍵詞:生命週期評估3E(工程面、環境面、經濟面)反應曲面法最適化處理系統
外文關鍵詞:life-cycle analysisUmbertosolvent extractionD2EHPAP507
相關次數:
  • 被引用被引用:1
  • 點閱點閱:486
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為因應世界新環境法規規範,發展出若干電池回收程序,大部分電池廢料皆可以物理或化學方法回收並於電池製程或其他工業中再次利用,此過程對環境影響甚巨,需有完善之廢電池回收程序,才可將廢棄電池之環境衝擊降至最低,值得審慎探討,目前二次鋰離子電池兼具有低資源化與去毒化等條件,其電池組成成分鋰、鈷金屬亦屬高價格原料,本研究針對廢棄鋰離子電池進行比較物理/化學回收處理技術原理及應用技術評估。
此外,利用「生命週期評估」分析環境衝擊影響結果,包括:全球氣候變遷、酸化、優養化、生態系統、人類現況等潛能加以探討,依據各單元程序之原理、應用、優勢、劣勢等面向進行評析;再針對廢棄鋰離子電池中之貴重金屬回收效率、化學藥劑使用量、回收處理時間、能源消耗量及廢棄物產生量等3E(工程面、環境面、經濟面)評估指標進行處理單元技術評估,建議可行之物理化學回收處理單元程序。
研究結果顯示,進行實驗室溶劑萃取實驗使用D2EHPA萃取劑於pH 5、萃取劑濃度為0.2 M,萃取時間為1小時,經萃取後30-40分鐘趨於穩定;此四種金屬的萃取百分比依序為:錳>鈷> 鎳>鋰(85% > 83% > 80% > 19%)。另使用P507萃取劑於pH 6、萃取劑濃度為0.2 ,4種金屬的萃取百分比依序為錳>鈷>鎳>鋰(97% > 95% > 94% > 2.7%)。
本研究應用反應曲面法(Response Surface Methodology;RSM)推估di (2-ethylhexyl) phosphoric acid (D2EHPA)萃取劑對鈷離子最適回收率為97.98%,其最佳操作條件pH值為5、萃取時間為55分鐘;最後再依據前述生命週期評估及3E(工程面、環境面、經濟面) 技術評估結果提出最適化處理系統技術,達成低成本、高效率、資源回收及二次公害之目標。


Spent lithium ion batteries (LIBs) contain lots of valuable metals such as aluminum, cobalt, copper, lithium, manganese, and nickel. The separation and recovery of cobalt and lithium among these metal mixtures are attractive due to their comparatively high price. However, the energy consumption and chemical additives would lead to additional environmental impacts.
In this study, eight different scenarios of LIBs recovery technologies were evaluated from the engineering, environmental and economic (3E) aspects. A life cycle assessment (LCA) was implemented in Umberto, and the Eco-invent database in Umberto was used to assess the environmental impact of various LIB recovery technologies. Impact categories including IPCC 2007, Impact 2002+, and CML 2001 were selected. Various impact factors, e.g., global warming, climate change potential, ecosystem quality, human health, aquatic acidification, eutrophication potential and human toxicity, were evaluated for various scenarios. The results indicated that the use of a strong acid could achieve high leaching efficiency, but generation of Cl2, NOx and SOx may cause environmental problems. The addition of HCl would have a greater impact than that of NH2OH and H2SO4, of which the potential was 0.021 kg SO2-Eq for acidification, 0.017 kg CO2-Eq for climate change (GWP-100a), 0.015 kg NOx for eutrophication, 0.0164 kg 1,4-DCB for human health (HTP-100a), and 0.00058 kg ethylene.
In addition, since the chemical extraction would result in the greatest impacts on environment, the solvent extraction of Li, Co, Mn, and Ni from spent LIBs was carried out using sodium - di (2-ethylhexyl) phosphoric acid (Na-D2EHPA) and mono-2-ethylhexyl ester (Na-P507) dissolved in kerosene. The results indicated that the percentage extraction for the metal ions including Li, Co, Mn, and Ni increased as the increase of equilibrium pH. In addition, Mn was preferentially extracted over Li, Co, and Ni with the extractants, where the maximized separation factor was operated under an O/A ratio of 1:1 was maximized with 1.0 M D2EHPA at an equilibrium pH value of 3.5. Lastly, according to the 3E analysis and response surface methodology, the optimum operations of physico-chemical processes for LIB recovery were proposed.



第一章 緒論 1-1
1.1 前言 1-1
1.2 研究目的 1-2
1.3 研究內容與架構 1-2
第二章 文獻回顧 2-1
2.1 鋰離子二次電池 2-1
2.1.1 鋰離子電池原理與結構 2-1
2.1.2 鋰離子電池種類比較 2-2
2.1.3 鋰離子電池的發展與產業鏈 2-5
2.2鋰離子電池回收管理制度 2-8
2.3鋰離子電池回收處理技術 2-12
2.3.1 回收處理技術概述 2-12
2.3.2 溶劑萃取處理技術 2-15
2.3.3 萃取平衡原理及機制 2-16
2.4 生命週期評估方法及應用 2-19
2.4.1 目標與範疇界定 2-19
2.4.2 盤查分析 2-19
2.4.3 衝擊評估 2-20
2.4.4 結果闡釋 2-20
第三章 研究方法 3-1
3.1 研究架構 3-1
3.2 程序評估 3-3
3.3 萃取程序評估 3-6
3.3.1 鋰離子電池實驗材料 3-6
3.3.2 化學萃取實驗 3-6
3.3.3 儀器鑑定分析 3-12
3.4 生命週期評估方法 3-13
3.4.1 評估流程 3-13
3.4.2 目標與範疇界定 3-15
3.4.3 生命週期盤查分析 3-16
3.4.4 環境衝擊評估 3-24
3.4.5 軟體簡介與操作流程 3-29
3.5 回收處理程序最適化 3-34
3.5.1 最適化流程 3-34
3.5.2 反應曲面法 3-35
3.5.3 3E分析架構 3-37
第四章 結果與討論 4-1
4.1 物理處理程序評估 4-1
4.1.1 程序效能評估結果 4-1
4.1.2 環境衝擊分析結果 4-5
4.1.3 總體績效分析結果 4-8
4.1.4 小結 4-11
4.2 化學處理程序評估 4-11
4.2.1 程序效能評估結果 4-11
4.2.2 環境衝擊分析結果 4-20
4.2.3 總體績效評估結果 4-30
4.2.4 小結 4-32
4.3 化學萃取程序研發 4-33
4.3.1 材料鑑定分析 4-33
4.3.2 萃取程序效能評估 4-37
4.3.3 環境衝擊評估結果 4-47
4.3.4 小結 4-50
4.4 程序最適化評估結果 4-51
4.4.1 物化處理程序研析 4-51
4.4.2 整合技術評估 4-57
4.4.3 最適化程序與操作 4-60
第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-3
參考文獻 R-1
附錄 R-7



Bernardes, A.M., Espinosa, D.C.R., Tenorio, J.A.S., 2004. Recycling of batteries: a
review of current processes and technologies. J. Power Sources 130, 291–298.
Bossche, P.V.D., The Current Legislative Development in the EU Waste Policy: Challenge or Opportunities for Metal Industry, Cobalt Development Institute, January 2006.
B,Scrosati and J, Garche ., 2010. Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430.
Chung-ming, Liu. 2010 ” Recommended Industries for Foreign Investment in Taiwan- Lithium Battery Industry “ , ITRI IEK TUNG, 12 / 31.
Chagnesa, Alexandre and Pospiech, Beata , 2013. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries, J Chem Technol Biotechnol; 88: 1191–1199.
Chen, L., Tang, X., Zhang, Y., Li, L., Zheng, Z., Zhang, Y., 2011. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108, 80–86.
Contestabile, M., Panero, S., Scrosati, B., 2001. A laboratory-scale lithium-ion battery recycling process. J. Power Sources 92, 65–69.
Chen,Liang., Tang, Xincun., Zhang, Yang., Li, Lianxing., Zeng, Zhiwen., Zhang, Yi., 2011. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy 108 80–86.
Directive of The European Communities, 2006. Directive 2006/66/EC of The
Devi, N. B., K. C. Nathsarma and V. Chakravortty, 1994 "Sodium Salts of D2EHPA,PC-88A and Cyanex-272 and their Mixtures as Extractants for Cobalt(II),"Hydrometallurgy, 34(3), 331-342.
Danuza, P.M., Germano, D., Renata, C.A.E., Marcelo, B.M., 2006. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid–liquid extraction with Cyanex 272. Journal of Power Sources 159,1510–1518.
European Parliament and of The Council On Batteries and Accumulators and Spent Batteries and Accumulators and repealing Directive 91/157/EEC.Strasbourg, 6 September 2006.
Granata, G., Moscardini, E., Pagnanelli, F., Trabucco, F., Toro, L., 2012. Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations Journal of Power Sources 206,393-401.
Guinee, J.B., Bruijn, H.d., 2002. Handbook on life cycle assessment. Operation Guide to ISO Standards, Eco-efficiency in industry and science. Kluwer Academic Publisher, Netherlands.
Granata,Giuseppe., Moscardini, Emanuela., Pagnanelli, Francesca., Trabucco, Franco ., Toro, Luigi., 2012. Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations.Journal of Power Sources 206 393– 401.
ISO. 2006. Environmental management – Life Cycle Assessment- Principles and Framework.
ISO. 2006. Environmental management – Life Cycle Assessment- Requirement and Guideline.
IPCC, 2007. Climate Change 2007: The Physical Science Basis, in: Solomon, S., D., Q., M., M., Z., C., M., M., K.B., A., M., T., H.L., M. (Eds.), IPCC Fourth Assessment Report (AR4). Intergovernmental Panel on Climate Change, Cambridge.
J,Dewulf ., G ,Van der Vorst., K, Denturck., H,Van Langenhove., W,Ghyoot ., Jan, Tytgat., K, Vandeputte., 2010. Recovery rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour. Conserv. Recycl. 54, 229–234
Kang, J., Sohn, J., Chang, H., Senanayake, G., Shin, S.M., 2010. Preparation of cobalt oxide from concentrated cathode material of spent lithium ion batteries by hydrometallurgical method. Adv. Powder Technol. 21, 175–179.
Li, Jianlin ., Daniela,Claus., Wood, David., 2011. Materials processing for lithium-ion batteries Journal of Power Sources. 196, 2452–2460.
Lang,DanielJ., Wager,Patrick., Stamp,Anna., 2009.”Prospective Environmental Assessment of Lithium Recovery in Battery Recycling” Carl Vadenbo Universitatstrasse 23 CH-8006 Zurich, August.
Li, L., Ge, J., Wu, F., Chen, R., Chen, S., Wu, B., 2010. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J. Hazard. Mater. 176, 288–293.
Li, L., Ge, J., Chen, R., Wu, F., Chen, S., Zhang, X., 2010. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium–ion batteries. Waste Manage. 30, 2615–2621.
Li, J., Shi, P., Wang, Z., Chen, Y., 2009. A combined recovery process of metals in spent lithium–ion batteries. Chemosphere 77, 1132–1136.
Lee, Ch. K., Rhee, Kang-In, 2002. Preparation of Li2CoO2 from spentlithium-ion batteries. Journal of Power Sources 109, 17-21.
Lee, C.K., Rhee, K.I., 2003. Reductive leaching of cathodic active materials from
lithium ion battery wastes. Hydrometallurgy 68, 5–10.
Lupi, C., Pasquali, M., Dell’Era, A., 2005. Nickel and cobalt recovery from lithium-ionbatteries by electrochemical processes. Waste Manag. 25, 215–220.
MOEA, 2010. Electricity Emission Coefficients in 2010. Energy Agency, MOEA, Taiwan.
Notter,D.A., Gauch, M., Widmer, R., Wager, P., Stamp, A., Zah, R., Althaus, H-J., 2010. Contribution of Li-Ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556.
Nan, J.M., Han, D.M., Yang, M.J., Cui, M., Hou, X.L., 2006. Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries Hydrometallurgy 47, 75–85.
Nan, J., Han, D., Zuo, X., 2005. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. Journal of Power Sources 152,278–284.
Pehnet, M., Henkel, J., 2009. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. International Journal of Greenhouse Gas Control 3, 49-66.
Ra, D.I., Han, K.S., 2006. Used lithium ion rechargeable battery recycling using Etoile–Rebatt technology. Journal of Power Sources 163, 284–288.
Rydh,Carl Johan and Magnus Karlstro‥m 2002. Life cycle inventory of recycling portable nickel–cadmium batteriesResources, Conservation and Recycling. 34,289–309.
Sun, L., Qiu, K. Q., 2011. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of Hazardous Materials 194, 378-384.
Sullivan, J.L. and Gaines,L., 2010 . “A review of Battery Life-Cycle Analysis: State of Knowledge And Critical Needs” Center for Transportation Research Argonne National Laboratory, October 1.
Swain, B., Jeong, J., Lee, J. C., 2007. Hydrometallurgical process for recovery ofcobalt from waste cathodic active material generated during manufacturing oflithium ion batteries. J. Power Sources 167, 536–544.
Umberto Version 5.5 User Manual, 5 ed., ifu Hamburg GmbH, Hamburg, 2005.
Tai-power Company, 2007. Electricity Emission Coefficients. Taiwan.
Valpak Consulting’s report for the “Battery Recycling Market Research Study”, in response to RENEW’s tender invitation dated 04March 2009.
Wang, F., He, F, Zhao JM, Sui N, Xu L and Liu H, 2012. Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex 272, PC-88A and their mixtures. Sep Purif Technol 93:8–14.
Wang,Rong-Chi., Lin,Yu-Chuan., Wu ,She-Huang., 2009. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy 99 194–201
Xu, J., Thomas, H.R., Francis,R.W., Lum, K.R., Wang, J., Liang,B., 2008. A review of process and technologies for the recovery of lithium–ion secondary batteries. J. Power. Sources 177, 512–527.
Zhang.,W.X., Wang, C.B., and Lien, H.L., 1998, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40, 387-395.
Zhu, S., He, W., Li, G., Zhou, X., Zhang, X., Huang, J., 2012. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Trans Nonferrous Metal Soc China 22:2274–2281.
Zackrisson, Mats., Avellan, Lars Jessica., Orlenius., 2010. Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles- Critical issues .Journal of Cleaner Production ,18, 1519-1529.
李敦鈁, 王成彥 , 尹 飛, 陳永強, 揭曉武, 阮書峰,”失效鋰離子電池焙燒產物物相和浸出分析, 北京礦冶研究總院冶金研究設計所, 北京100044,2002。
周子仁,「日本二次鋰電池的市場及技術現況」,工業材料,154 期,pp.144-149,1999。
袁文輝,邱定蕃,王成彥,”從鋰離子電池回收鈷銅物料鹽酸浸出機理研究”, Chemical Engineering ( China) Vo.l 38 No. 3Mar. 2010。
胡康寧、林明瑞、林盛隆,2004,「以生命週期評估法進行電動機車與燃油機車之比較研究」,工業防治污染,第 89 期。
薛立人,「二次電池之回顧與展望」,工業材料,146 期,1999。
陳璿豪、蔡泓欣、蔡德華,"以溶劑萃取分離錳(Ⅱ)和鈷(Ⅱ)離子之研究",
年輸送現象及其應用研討會,2008。
陳明傑,「廢鋰電池資源再生之研究」,大葉大學環境工程研究所碩士論文,台中,2002。
陳希舜、呂守陞,2010,「永續建築生命週期評估系統之研發」,行政院國家科學委員會補助產學合作研究計畫,NSC98-2622-E011-013-CC1。
黃玠然,2011,「永續發展導向之臺灣電力政策分析」,國立臺灣大學工學院環境工程研究所碩士論文。
黃升茂,「台灣鋰電池產業分析與競爭策略之研究」,輔仁大學科技管理學學程碩士論文,臺北,2008。
黃瓊儀,2003,「人造纖維產品之生命週期評估研究」,國立成功大學環境工程研究所碩士論文。
張衛新, 馬世闖, 楊則恒, 周晨旭, 王 強,”基於廢舊鋰離子電池正極材料LiMn2O4製備MnO2 催化劑”, 合肥工業大學化工學院, 安徽合肥 230009,2002。
蔡泓欣,以液膜萃取分離錳(II)和鎳(II)之研究,國立台北科技大學博士論文,臺北,2011。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top