(54.236.58.220) 您好!臺灣時間:2021/02/27 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝仁捷
研究生(外文):Jen-Chieh Hsieh
論文名稱:厭氧生物固定化程序處理都市污水
論文名稱(外文):Immobilized Anaerobic Microbial Cell for Treatment of Domestic Wastewater
指導教授:林正芳林正芳引用關係
口試委員:康佩群林郁真周楚洋童心欣
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:95
中文關鍵詞:污泥平板厭氧處理系統都市污水CSTR甲烷氣
外文關鍵詞:Modified flat-plate EMMCAnaerobic treatmentDomestic wastewaterCSTRBiogas production
相關次數:
  • 被引用被引用:6
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固定混合生物細胞(EMMC)程序,具有操作簡易、不需迴流污泥、可大幅降低污泥處置成本等優點,其中最重要的特點之一為有效提高污泥停留時間(SRT),將EMMC應用於厭氧系統能有效提高SRT期望可提升厭氧系統處理都市污之效率。本研究將厭氧污泥包埋製成污泥平板,以單槽式CSTR操作,SRT依不同操作參數,介於78-177天之間。
研究主要探討厭氧生物固定化程序對都市污水的處理成效,以人工合成污水測試不同操作因子對厭氧系統的影響,不同進流COD濃度 (700、400、200 mg/L)與水力停留時間 (12、6、4小時),探討pH值、COD去除率及甲烷產量等效能作評估,最後操作實際都市污水並探討在此實驗反應系統下的處理效果。
進流COD濃度為 700與400 mg/L,COD去除率佳,達90%以上,在進流COD 700 mg/L操作下HRT自12小時縮短為6小時後甲烷產氣量提升了約2.5倍,甲烷濃度為60%。但在進流COD 200 mg/L的操作情形,COD去除約80%,產氣量下降且甲烷濃度僅剩40%。因此低濃度進流會對厭氧系統造成抑制,使COD處理效率及氣體產率下降。
厭氧系統處理實際污水HRT操作為6小時,COD去除率達80%,平均CODe 50 mg/L;產氣效率低,GPR (Gas production rate)僅0.038 m3/m3/d、平均甲烷濃度23.2%,COD去除效率及甲烷產率都低於合成污水測試之結果。
整體而言,厭氧生物固定化程序異於傳統厭氧系統,提高SRT具有相當的潛力可處理都市污水以減少一般都市污水廠整體用電量與提高產能之效。但仍需進一步研究應用之限制條件及提高甲烷氣之轉換效率。


Entrapped mixed microbial cell (EMMC) process demonstrated the good mechanical strength and durability. It was found to have small land requirement, stable operating characteristics and no need for sludge recycle. In addition, it can dramatically increase the SRT in the reactor that may help the anaerobic system to have better performance on the treatment of domestic wastewater.
The research was discussed the performance of using Immobilized anaerobic system to treat synthetic and real wastewater. The operation parameters of synthetic wastewater trial were influent COD concentration (700, 400, 200 mg/L) and HRT (12, 6, 4 hours). Then, Test the real domestic wastewater and discuss the results.
In the synthetic wastewater trial, the influent COD 400, 700 mg/L had better COD removal efficiency (about 90%) and the methane gas concentration (above 60%). However, at influent COD concentration below 200 mg/L may decrease the COD removal efficiency and methane concentration. The COD removal efficiency was 80% and methane concentration was 40%. Form the results, low concentration of influent COD as 200 mg/L may show the worse COD removal efficiency and methane conversion of anaerobic system.
In the real domestic wastewater trial, HRT was operated at 6 hours. The COD removal efficiency was 80% (average) and methane gas concentration 23.2% (average) with low gas production rate 0.038 m3/m3/d. Domestic wastewater may cause some inhibition to the anaerobic treatment system.
In conclusion, immobilized anaerobic microbial cell process has the potential to treat the organic matters in the domestic wastewater. However, it still needs further researches to clarify what cause the inhibition and how to enhance the utility of organic matters to convert into the methane gas.


致謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的及工作項目 3
第二章 文獻回顧 5
2.1. 固定混合生物細胞程序 5
2.2. 國內污水廠水質特性及處理現況 6
2.2.1. 國內污水水質與處理現況 8
2.2.2. 水質放流水管制標準 13
2.3. 厭氧處理系統 15
2.3.1. 厭氧系統的優勢 15
2.3.2. 厭氧系統的限制 16
2.4. 厭氧生物系統基本原理及概念 17
2.4.1. 厭氧系統生化反應機制 17
2.4.2. 厭氧系統環境需求 21
2.4.3. 厭氧反應失衡指標 23
2.4.4. 厭氧系統毒性及控制 25
2.5. 厭氧系統處理都市污水 30
2.5.1. 厭氧系統處理都市污水現況 32
2.5.2. 厭氧系統處理都市污水面臨問題 37
第三章 材料與方法 41
3.1 實驗架構 41
3.2 實驗材料與設備 42
3.2.1 厭氧固定生物系統實驗裝置 42
3.2.2 污泥平板製備 43
3.2.3 合成污水組成 44
3.3 實驗方法 45
3.4 分析方法 47
3.4.1 水質分析 47
3.4.2 氣相分析 48
第四章 結果與討論 49
4.1 污泥平板基本特性分析 49
4.1.1 厭氧污泥基本特性 49
4.1.2 污泥平板基本性質 50
4.2 微生物馴養 53
4.2.1 馴養、恢復活性階段 53
4.3 合成污水參數測試 55
4.3.1 試驗參數水質分析結果 55
4.3.2 試驗參數氣相分析結果 59
4.3.3 水力停留時間的影響 62
4.3.4 進流COD濃度的影響 64
4.3.5 單位時間體積COD負荷的影響 65
4.4 實際污水測試 66
4.4.1 實際污水水質分析 66
4.4.2 實際污水測試(I) 69
4.4.3 實際污水測試(II) 71
4.4.4 反應失效後重新啟動實驗 75
第五章 結論與建議 79
5.1 結論 79
5.2 建議 80
參考文獻 81
附錄 85


Aiyuk, S., Amoako, J., Raskin, L., Van Haandel, A., &; Verstraete, W. (2004). Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. Water Res, 38(13), 3031-3042.
Anderson, G., &; Donnelly, T. (1977). Anaerobic digestion of high strength industrial wastewaters. The Public Health Engineer, 5(3).
Bachmann, A., Beard, V. L., &; McCarty, P. L. (1985). Performance characteristics of the anaerobic baffled reactor. Water Res, 19(1), 99-106.
Blanc, F. C., O''Shaughnessy, J. C., &; Corr, S. (1983). Treatment of beef slaughtering and processing wastewaters using rotating biological contactors. Paper presented at the Proceedings of the... Industrial Waste Conference, Purdue University (USA).
Bodik, I., Herdova, B., &; Drtil, M. (2000). Anaerobic treatment of the municipal wastewater under psychrophilic conditions. Bioprocess Engineering, 22, 385-390.
Cassidy, M., Lee, H., &; Trevors, J. (1996). Environmental applications of immobilized microbial cells: a review. Journal of Industrial Microbiology, 16(2), 79-101.
Draaijer, H., Maas, J., Schaapman, J., &; Khan, A. (1992). Performance of the 5 MLD UASB reactor for sewage treatment at Kanpur, India. Water Science &; Technology, 25(7), 123-133.
Foresti, E., Zaiat, M., &; Vallero, M. (2006). Anaerobic Processes as the Core Technology for Sustainable Domestic Wastewater Treatment: Consolidated Applications, New Trends, Perspectives, and Challenges. Reviews in Environmental Science and Bio/Technology, 5(1), 3-19. doi: 10.1007/s11157-005-4630-9
Galloway, J. N., &; Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. AMBIO: A Journal of the Human Environment, 31(2), 64-71.
Gujer, W. &; Zehnder, J. B. (1983). Conversion process in anaerobic digestion. Wat. Sci. Tech. 15, 127-167.
Huang, Z., Ong, S. L., &; Ng, H. Y. (2011). Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water Res, 45(2), 705-713. doi: 10.1016/j.watres.2010.08.035
Kiriyama, K., Tanaka, Y., &; Mori, I. (1992). Field test of a composite methane gas production system incorporating a membrane module for municipal sewage. Water Science &; Technology, 25(7), 135-141.
Lettinga, G., Hulshoff Pol, L., Zeeman, G., Field, J., Van Lier, J., Van Buuren, J., . . . Lens, P. (1997). Anaerobic treatment in sustainable environmental production concepts.
Lettinga, G., Roersma, R., &; Grin, P. (1983). Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnology and bioengineering, 25(7), 1701-1723.
Lettinga, G., Van Velsen, A., Hobma, S. W., De Zeeuw, W., &; Klapwijk, A. (1980). Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and bioengineering, 22(4), 699-734.
Liu C.C., Ng K.K., Wu C.J., Lin C.F., Hong, PKA, Yang, P.Y. (2013). Organics and nitrogen removal from wastewater across a plate of entrapped mixed microbial cells. J Environ. Sci. Manage. 16. 29-35
McCarty, P. L. (1964a). Anaerobic Waste Treatment Fundamentals, Part Four, Process Design. Public Works, 95-99.
McCarty, P. L. (1964b). Anaerobic Waste Treatment Fundamentals, Part One, Chemistry and Microbiology. Public Works, 107-112.
McCarty, P. L. (1964c). Anaerobic Waste Treatment Fundamentals, Part Three, Toxic Materials and Their Control. Public Works, 91-94.
McCarty, P. L. (1964d). Anaerobic Waste Treatment Fundamentals, Part Two, Environmental Requirements and Control. Public Works, 123-126.
McCarty, P. L. (1982). One hundred years of anaerobic treatment. Paper presented at the Anaerobic digestion 1981: proceedings of the Second International Symposium on Anaerobic Digestion held in Travemhunde, Federal Republic of Germany, on 6-11 September, 1981/editors, DE Hughes...[et al.].
McCarty, P. L., Bae, J., &; Kim, J. (2011). Domestic wastewater treatment as a net energy producer--can this be achieved? Environ Sci Technol, 45(17), 7100-7106. doi: 10.1021/es2014264
McCarty, P. L., Jeris, J. S., &; Murdoch, W. (1963). Individual volatile acids in anaerobic treatment. Journal (Water Pollution Control Federation), 35(12), 1501-1516.
McCarty, P. L., &; Smith, D. P. (1986). Anaerobic wastewater treatment. Environ Sci Technol., 20(12).
Owen, W. F. (1982). Energy in wastewater treatment. 373.
Qian, X., Yang, P. Y., &; Maekawa, T. (2001). Evaluation of Direct Removal of Nitrate with Entrapped Mixed Microbial Cell Technology Using Ethanol as the Carbon Source. Water Environment Research, 73(5), 584-589. doi: 10.2307/25045541
Ruiz, I., Blazquez, R., &; Soto, M. (2009). Methanogenic toxicity in anaerobic digesters treating municipal wastewater. Bioresour Technol, 100(1), 97-103. doi: 10.1016/j.biortech.2008.06.003
Schellinkhout, A., &; Collazos, C. (1992). Full-scale application of the UASB technology for sewage treatment. Water Science &; Technology, 25(7), 159-166.
Seyfried, C., Bode, H., &; Saake, M. (1984). Anaerobic Treatment of Pectin Wastes: Experiences with a Full Scale and a Semi Technical Plant. Water Science &; Technology, 16(12), 343-356.
Shin, C., Lee, E., McCarty, P. L., &; Bae, J. (2011). Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater. Bioresour Technol, 102(21), 9860-9865. doi: 10.1016/j.biortech.2011.07.109
Speece, R. E. (2008). Anaerobic biotechnology and odor/corrosion control for municipalities and industries: Archae Press.
Strous, M., Van Gerven, E., Zheng, P., Kuenen, J. G., &; Jetten, M. S. (1997). Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Res, 31(8), 1955-1962.
Switzenbaum, M. S., &; Jewell, W. J. (1980). Anaerobic attached-film expanded-bed reactor treatment. Journal (Water Pollution Control Federation), 1953-1965.
Tait, S. J., &; Friedman, A. (1980). Anaerobic rotating biological contactor for carbonaceous wastewaters. Journal (Water Pollution Control Federation), 2257-2269.
Tandoi, V., Jenkins, D., &; Wanner, J. (2005). Activated sludge separation problems: Theory, Control Measure, Practical Experience, Scientific and Technical Report. Londom: IWA Publishing.
Tare, V., Ahammed, M., &; Jawed, M. (1997). Biomethanation in domestic and industrial waste treatment-an Indian scenario. Paper presented at the Proc. 8 th International Conference on Anaerobic Digestion.
Van de Last, A., &; Lettinga, G. (1992). Anaerobic treatment of domestic sewage under moderate climatic(dutch) conditions using upflow reactors at increased superficial velocities. Water Science &; Technology, 25(7), 167-178.
Vieira, S. M. M., &; Garcia Jr, A. D. (1992). Sewage treatment by UASB-reactor. Operation results and recommendations for design and utilization. Water Science &; Technology, 25(7), 143-157.
Yang, P. Y., Chen, H. J., &; Kim, S. J. (2003). Integrating entrapped mixed microbial cell (EMMC) process for biological removal of carbon and nitrogen from dilute swine wastewater. Bioresour Technol, 86(3), 245-252.
Yang, P. Y., Zhang, Z. Q., &; Jeong, B. G. (1997). Simultaneius Removal of Carbon and Nitrogen using an Entrapped-Mixed Microbial Cell. Wat. Res., 31(10), 2617-2625.
Young, J. C., &; McCarty, P. L. (1969). The anaerobic filter for waste treatment. Journal (Water Pollution Control Federation), R160-R173.
Yu, H., Tay, J.-H., &; Wilson, F. (1997). A sustainable municipal wastewater treatment process for tropical and subtropical regions in developing countries. Water Science and Technology, 35(9), 191-198.
內政部營建署 (2011)。污水處理廠節能計畫。
李姿逸 (2012)。環保固化材料應用於固定生物程序去除廢水碳與氮。國立台灣大學工學院環境工程學研究所碩士論文。
林瑞絃 (2012)。平板式固定生物程序處理廢水碳氮之研究。國立台灣大學工學院環境工程學研究所碩士論文。
黃郁婷 (2013)。厭氧薄膜生物處理低濃度廢污水。國立台灣大學工學院環境工程學研究所碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔