跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 05:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪晨晏
研究生(外文):Chen-Yan Hong
論文名稱:預臭氧加氯程序中Trimethoprim , Sulfamethoxazole及 Diclofenac 之含氮消毒副產物生成探討
論文名稱(外文):Formation of Nitrogen Containing Disinfection By-products via Pre-ozonation/Chlorination Processes - Exemplified by Trimethoprim ,Sulfamethoxazole and Diclofenac
指導教授:蔣本基蔣本基引用關係
口試委員:顧洋曾迪華林逸彬
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:171
中文關鍵詞:臭氧氧化預臭氧加氯程序鹵乙&;#33096;三氯硝基甲烷含鹵丙酮
外文關鍵詞:ozonationpre-ozonation/chlorination processhaloacetonitrilestrichloronitromethanehaloketones
相關次數:
  • 被引用被引用:0
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水污染為近年來重要的環境及公共健康議題。本研究中以臭氧作為加氯預處理,將含氮之個人保健藥物進行降解。本研究中將Diclofenac , Sulfamethoxazole 及Trimethoprim 分別以預臭氧加氯程序進行實驗。Diclofenac為解熱鎮痛常用藥品並為地面水體檢測殘留中常見之個人保健藥物,Sulfamethoxazole 及Trimethoprim則做為抗生劑使用,亦為地面水體或地下水體中常被偵測之個人保健用品。結果顯示,隨著預臭氧劑量增加SUVA值將減少,原因為化合物中的環狀結構會受到臭氧氧化並可能為加氯副產物生成機制的重要因素。
本實驗中偵測鹵乙&;#33096;、三氯硝基甲烷及含鹵丙酮等消毒副產物。並使用三種預臭氧劑量對於加氯副產物生成之影響討論。其中,提高預臭氧劑量將增加含鹵乙&;#33096;(Haloacetonitriles, HANs)、三氯硝基甲烷(Trichloronitromethane, TCNM)及含鹵丙酮(Haloketones, HKs)之生成速率及其濃度。但亦增加含鹵乙&;#33096;和含鹵丙酮之水解速率。氯仿為整體程序中生成最主要之加氯副產物。TCNM 為預臭氧加氯程序之指標性含氮消毒副產物,本研究中亦發現其生成趨勢與氯仿相似,均為隨著加氯反應時間增加而增加至穩定濃度。且隨著預臭氧劑量的提升將增高其濃度。
針對Diclofenac , Sulfamethoxazole 及Trimethoprim在加氯處理程序中生成加氯副產物之問題。由本研究結果顯示,預臭氧處理可做為工程應用程序以降低藥物毒性影響,但伴隨產生的加氯副產物(TCNM等)仍需進一步考量其導致的風險。


Water pollution degrades environmental quality and adversely impacts public health. PPCPs are one of the pollutants which may contribute adverse impact to our environment. Diclofenac is a nonsteroidal anti-inflammatory , Sulfamethoxazole and Trimethoprim are the antibiotic. This three drugs was usually detected in surface water. In this research , ozonation was used as a pre-treatment process to oxidize the nitrogen containing PPCPs. The UV254 absorbance (or SUVA) , which is proportional to the aromatic content of water , was selected as an indicator for organic compound and DBPs formation.
The effects of pre-ozonation on the formations of haloacetonitriles , trichloronitromethane and the haloketones were investigated in this study. The pre-ozonation dosages used in this experiment were 2.4mg/L ,4.8mg/L and 7.2mg/L , respectively. Results show that higher ozone dosage would increase the formation rate of DBP and elevate the maximum DBP concentration to a higher level during the 7 day chlorination process. However , it was found that DCAN , DCP , TCP decay rapidly with increasing ozone dosages levels. Chloroform , a hydrolysis byproduct of other DBPs , was the major DBP species in the pre-ozonation plus chlorination processes. Chloroform was formed rapidly during the chlorination process and steadily maintain its maximum concentration. TCNM , the most concerned nitrogen containing DBP was chosen as an indicator to evaluate the pre-ozonation effect. The formation trend of TCNM was studied and was found to be similar to that of chloroform. The concentration of TCNM was increasing with the pre-ozonation dosages level.
In this research , the pre-ozonation is recommended to be the treatment technology to treat the Diclofenac , Sulfamethoxazole and Trimethoprim in drinking water treatment process. But the DBPs formation (like TCNM ) would cause the risk which need to consider in the further study


誌謝 I
Abstract II
摘要 IV
Contents V
List of Figures IX
List of Tables XIV
Oral Defense Comments XVI
Chapter 1 Introduction 1-1
1-1 Background 1-1
1-2 Objectives 1-3
Chapter 2 Literature review 2-1
2-1 Characteristics of nitrogen containing PPCPs 2-1
2-1-1 Sulfamethoxazole 2-1
2-1-2 Diclofenac 2-2
2-1-3 Trimethoprim 2-3
2-2 Ozonation 2-4
2-2-1 Ozonation mechanism 2-6
2-2-1-1 Direct ozonation 2-7
2-2-1-2 Indirect ozonation 2-11
2-2-2 Pre-ozonation 2-13
2-3 Chlorination 2-15
2-3-1 Formation of disinfection by-products 2-16
2-3-2 The Formation Mechanisms of halogenated DBPs during chlorination 2-20
2-4 Toxicity Test via Bioassays 2-26
2-4-1 Mechanism of luminescent bacteria assay 2-30
2-4-2 The luminescent bacteria assay 2-31
2-4-3 Comparing the sensitivity of LBTA with other bioassays 2-33
2-4-4 The application of luminescent bacteria on environmental monitoring - For water samples 2-36
Chapter 3 Materials and Methods 3-1
3-1 Target compound 3-2
3-2 Ozonation process 3-3
3-3 Chlorination 3-4
3-4 N –PPCP analysis - HPLC 3-6
3-5 Disinfection byproducts analysis – Purge and Trap GC-ECD 3-8
3-6 Toxicity analysis 3-13
3-7 Total organic carbon analysis 3-15
Chapter 4 Results and Discussions 4-1
4-1 Ozonation of Diclofenac ,Sulfamethoxazole and Trimethoprim 4-1
4-1-1 Degradation of Diclofenac and TOC Removal in Different Ozone Dosages 4-1
4-1-2 Degradation of Sulfamethoxazole and TOC Removal in Different Ozone Dosages 4-5
4-1-3 Degradation of Trimethoprim and TOC Removal in Different Ozone Dosages Levels 4-9
4-2 DBPs Formation during Pre-ozonation/Chlorination Processes. 4-12
4-2-1 Development of predict model for Chloroform ,DCAN ,TCNM , and 1,1-DCP , 1,1,1-TCP formations 4-12
4-2-2 DBPs formation of Diclofenac via pre-ozonation/chlorination processes 4-18
4-2-3 DBPs formation of Sulfamethoxazole via pre-ozonation /chlorination process 4-29
4-2-4 DBPs formation of Trimethoprim via Pre-ozonation /Chlorination process 4-39
4-3 Toxicological Degradastions of Diclofenac , Sulfamethoxazole and Trimethoprim during Pre-ozonation/Chlorination Processes 4-48
4-3-1 Toxicity degradation of Diclofenac via the pre-ozonation /chlorination processes 4-49
4-3-2 Toxicity degradation of Sulfamethoxazole during pre-ozonation / chlorination process 4-53
4-3-3 Toxicity degradation of Trimethoprim during pre-ozonation / chlorination process 4-57
4-4 Experimental Data Factor Analysis 4-61
4-4-1 Factor analysis of Diclofenac via Pre-ozonation/Chlorination processes 4-61
4-4-2 Factor analysis of Sulfamethoxazole via Pre-ozonation /Chlorination processes. 4-65
4-4-3 Factor analysis of Trimethoprim via Pre-ozonation /Chlorination processes 4-68
4-5 Summary of Diclofenac , Sulfamethoxazole and Trimethoprim via Pre-ozonation/Chlorination Processes. 4-71
4-5-1 Summary of Diclofenac , Sulfamethoxazole and Trimethoprim via Ozonation 4-71
4-5-2 Summary of DBPs Formation of Target Compounds via Pre-ozonation /Chlorination processes 4-74
4-5-3 Summary of Toxicity Transmutation of Target Compounds via Pre-ozonation/Chlorination processes. 4-78
Chapter 5 Conclusions and Recommendations 5-1
5-1 Conclusions 5-1
5-2 Recommendations 5-3
Reference R-1


A. Soupilas, C.A. Papadimitriou, P. Samaras, K. Gudulas, D. Petridis. (2008).” Monitoring of industrial effluent ecotoxicity in the greater Thessaloniki area”. Desalination. (224), 261-270

Almudena Aguinaco, Fernando J. Beltr&;#225;n, Juan F. Garc&;#237;a-Araya, Ana Oropesa (2012).” Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: In&;#64258;uence of variables.” Chem. Eng. J. (189-190): 275–282.

Alouini Z, Seux R. (1987) Kinetics and mechanisms of hypochlorite oxidation of alpha-amino-acids at the time of water disinfection. Water Res (21), 335–343.

Andreozzi, R.A., Insola, V.C., and D’Amore, M.G., (1991).Ozonation of pyridine in aqueous solution: Mechanistic and kinetic aspects. Water Res. 25(6), 655-659

Batt, A.L., Kim, S. and Aga, D.S. (2006) Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environ Sci Technol 40(23), 7367-7373.

Behera, S.K., Kim, H.W., Oh, J.E. and Park, H.S. (2011) Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ 409(20), 4351-4360.

Beltra′n, F.J.(2004). Ozone Reaction Kinetics for Water and Wastewater Systems. CRC, Boca Raton, pp. 113–149.

Benotti, M.J., Trenholm, R.A., Vanderford, B.J., Holady, J.C., Stanford, B.D. and Snyder, S.A. (2009) Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol 43(3), 597-603.

Boccelli, D.L., Tryby, M.E., Uber, J.G. and Summers, R.S. (2003) A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Res 37(11), 2654-2666.

Bond, T., Templeton, M.R. and Graham, N. (2012) Precursors of nitrogenous disinfection by-products in drinking water--a critical review and analysis. J Hazard Mater 235-236, 1-16.
Behera, S.K., Kim, H.W., Oh, J.E. and Park, H.S. (2011) Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ 409(20), 4351-4360.

Carlsson, C., Johansson, A.-K., Alvan, G., Bergman, K., Kuhler, T., 2006. Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients, Science of the Total Environment. 364, 67-87.

Celebi, H. and Sponza, D.T. (2012) Comparison of the sensitivities of fish, Microtox and Daphnia-magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems. Water Sci Technol 66(5), 1117-1131.

Chang, N.C., Ma, Y.S., Zing, F.F. (2002). Reducing the formation of disinfection by-products by pre-ozonation. Chemosphere 46(1), 21-30

Chen, B. and Westerhoff, P. (2010) Predicting disinfection by-product formation potential in water. Water Res 44(13), 3755-3762.

Chiang, P.C., Chang, E.E., Chuang, C.C., Liang, C.H. and Huang, C.P. (2010) Evaluating and elucidating the formation of nitrogen-contained disinfection by-products during pre-ozonation and chlorination. Chemosphere 80(3), 327-333.

Chiang, P.C., Chang, E.E. and Liang, C.H. (2002) NOM characteristics and treatabilities of ozonation processes. Chemosphere 46(6), 929-936.

Choi, J. AND S. D. Richardson. FORMATION OF HALONITROMETHANES IN DRINKING WATER. Presented at American Water Works Association Water Quality Technical Conference, San Antonio, TX, November 14-18, 2004.

Coelho, A.D., Sans, C., Aguera, A., Gomez, M.J., Esplugas, S. and Dezotti, M. (2009) Effects of ozone pre-treatment on diclofenac: intermediates, biodegradability and toxicity assessment. Sci Total Environ 407(11), 3572-3578.

David A. Reckhow, Teresa L. Platt, Andrew L. MacNeill, and John N. McClellan.(2001).” Formation and Degradation of DCAN in Drinking Waters.” . J. Water Supply Res. Technol.(50), 1-13.

Deborde, M., Gunten U.V., 2008. Reactions of chlorine with inorganic and organic compounds during water treatment - Kinetics and mechanisms: A critical review. Water Res. 42(1-2), 13-51.

Dodd, M.C. and Huang, C.H. (2004) Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms, and pathways. Environ Sci Technol 38(21), 5607-5615.

Dotson, A., Westerhoff, P. and Krasner, S.W. (2009) Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products. Water Sci Technol 60(1), 135-143.

E. E. Chang, Su&;#8208;Hui Chao, Pen&;#8208;Chi Chiang and Jiunn&;#8208;Fwu Lee.(1996). “Effects of chlorination on THMs formation in raw water.” Toxicological and Environmental Chemistry. (56) 211-225.

Fang, J., Ma, J., Yang, X. and Shang, C. (2010) Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa. Water Res 44(6), 1934-1940.

Fernando J. Beltr’an, (2004). “Ozone Reaction Kinetics for Water and Wastewater Systems.” Lewis Publishers. New York Washington, D.C.

Ferrari, B., Mons, R., Vollat, B., Fraysse, B., Paxeus, N., Lo Giudice, R., Pollio, A., Garric, J., 2004. Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environment Toxicology and Chemistry, 23, 1344-1354.

Ferrari, B., Paxeus, N., Lo Giudice, R., Pollio, A., and Garric, J., 2003. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac, Ecotoxicology and Environmental Safety, 55, 359-370.

Flokstra, B.R., Aken, B.V. and Schnoor, J.L. (2008) Microtox toxicity test: detoxification of TNT and RDX contaminated solutions by poplar tissue cultures. Chemosphere 71(10), 1970-1976.
&;#8195;
Gilbert, E., 1978. Reaction of ozone with organic compounds in dilute aqueous solution: Identification of their oxidation product. In: Rice, R.G., Cotruvo, I.A. (Eds.).

Ozone/Chlorine Dioxide Products of Organic Materials. International Ozone Association, Cleveland, pp. 227-242.

Gomez-Ramos Mdel, M., Mezcua, M., Aguera, A., Fernandez-Alba, A.R., Gonzalo, S., Rodriguez, A. and Rosal, R. (2011) Chemical and toxicological evolution of the antibiotic sulfamethoxazole under ozone treatment in water solution. J Hazard Mater 192(1), 18-25.

Hammes, F., Salhi, E., Koster, O., Kaiser, H.P., Egli, T. and von Gunten, U. (2006) Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water. Water Res 40(12), 2275-2286.

Hanna, J.V., Johnson, W.D., Quezada, R.A., Wilson, M.A., Xlao-Qlao, L., 1991. Characterization of aqueous humic substances before and after chlorination. Environ. Sci. Technol. 25(6), 1160-1164.

Harada, A., Komori, K., Nakada, N., Kitamura, K., Suzuki Y., 2008. Biological effects of PPCPs on aquatic lives and evaluation of river waters affected by different wastewater treatment levels. Water Sci. Technol., 58, 1541-1546.

Hass, C.N., Karra, S.B. (1995). Kinetics of wastewater chlorine demand exertion. J. Water. Pollut. Con. F. 56(2), 170-173.

Hoign&;#233;, J. (1998). Chemistry of aqueous ozone and transformation of pollutants by ozonation and advanced oxidation process. In: Hrubec, J. (Ed.). The Hand Book of Environmental Chemistry-Part C: Quality and Treatment of Drinking Water II. Springer, Berlin.

Hoign&;#233;, J., Bader, H., 1988. The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozonation/chlorination treatment of drinking water. Water Res. 22(3), 313-319.
&;#8195;
Hu, J., Song, H. and Karanfil, T. (2010) Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: the effects of disinfectants, pH, bromide, and nitrite. Environ Sci Technol 44(2), 794-799.

Huber, M.M., Canonica, S., Park, G.Y. and von Gunten, U. (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37(5), 1016-1024.

I.E. Tothill , A.P.F. Turner. (1996). “Developments in bioassay methods for toxicity testing in water treatment.” trends in analytical chemistry.(15), no. 5.

Jean Philippe Croue , David A. Reckhow. (1989).”Destruction of chlorination byproducts with sulfite.” Environ. Sci. Technol. 23 (11), pp 1412–1419

Joo, S.H. and Mitch, W.A. (2007) Nitrile, aldehyde, and halonitroalkane formation during chlorination/chloramination of primary amines. Environ Sci Technol 41(4), 1288-1296.

Junker, T., Alexy, R., Knacker, T. and Kummerer, K. (2006) Biodegradability of 14C-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations. Environ Sci Technol 40(1), 318-324.

Karlsruhe FRG.(1979). “Oxidation techniques in drinking water treatment — drinking water pilot project report IIA: advanced treatment technology.” Washington D.C.: USEPA

Keisuke Ikehata, Naeimeh Jodeiri Naghashkar, Mohamed Gamal El-Din (2006). “Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review.’’ Ozone: Sci. Eng. (28): 353-414.

Kim, I., Yamashita, N. and Tanaka, H. (2009a) Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 77(4), 518-525.

Kim, I., Yamashita, N. and Tanaka, H. (2009b) Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J Hazard Mater 166(2-3), 1134-1140.

Kim, J.W., Ishibashi, H., Yamauchi, R., Ichikawa, N., Takao, Y., Hirano, M., Koga, M. and Arizono, K. (2009c) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34(2), 227-232.

Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J. and Snyder, S.A. (2007a) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41(5), 1013-1021.

Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.G. and Park, J. (2007b) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33(3), 370-375.

Ko, Y.W., Chiang, P.C., Chuang, C.L., Chang, E.E. (2000). Kinetics of the reaction between ozone and p-hydroxybenzoic acid in a semibatch reactor. Ind. Eng. Chem. Res. 39(3), 635-641

Kohei Kawabata, Kazumi Sugihara, Seigo Sanoh, Shigeyuki Kitamura, Shigeru Ohta. (2012).” Ultraviolet-photoproduct of acetaminophen: Structure determination and evaluation of ecotoxicological effect.” Journal of Photochemistry and Photobiology A: Chemistry. (249), 29–35

Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. and Buxton, H.T. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36(6), 1202-1211.

Kosma, C.I., Lambropoulou, D.A. and Albanis, T.A. (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466-467, 421-438.

Krasner, S.W., Weinberg, H.S., Richardson, S.D., Pastor, S.J., Chinn, R., Sclimenti, M.J., Onstad, G.D. and Thruston, A.D., Jr. (2006) Occurrence of a new generation of disinfection byproducts. Environ Sci Technol 40(23), 7175-7185.
&;#8195;
Kundu, B., Richardson, S.D., Granville, C.A., Shaughnessy, D.T., Hanley, N.M., Swartz, P.D., Richard, A.M. and DeMarini, D.M. (2004) Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100: structure-activity analysis and mutation spectra. Mutat Res 554(1-2), 335-350.

Langlais, B., D.A. Reckhow, and D.B. Brink, (1991). “Ozone in Water Treatment-Application and Engineering.” , Lewis Publisher.

Lee, W., Westerhoff, P., Croue, J.-P., 2007. Dissolved organic nitrogen as a
precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine,
and trichloronitromethane. Environ. Sci. Technol. 41, 5485–5490.

Legube, B.K., Agbekodo, P.C. (1994). Removal of organohalide precursors by nanofiltration. In: Proceeding in the IWSA Specialized Conference on Disinfection, South Africa, pp. 1-14.

Lin, A.Y., Panchangam, S.C. and Chen, H.Y. (2010) Implications of human pharmaceutical occurrence in the Sindian river of Taiwan: a strategic study of risk assessment. J Environ Monit 12(1), 261-270.

Lin, A.Y. and Tsai, Y.T. (2009) Occurrence of pharmaceuticals in Taiwan''s surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Sci Total Environ 407(12), 3793-3802.

Lin, A.Y., Yu, T.H. and Lin, C.F. (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere 74(1), 131-141.

Lindberg, R.H., Olofsson, U., Rendahl, P., Johansson, M.I., Tysklind, M. and Andersson, B.A. (2006) Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40(3), 1042-1048.

Makris, K.C. and Snyder, S.A. (2010) Screening of pharmaceuticals and endocrine disrupting compounds in water supplies of Cyprus. Water Sci Technol 62(11), 2720-2728.
&;#8195;
Marinella Farre′and Damia` Barcelo. (2003). “Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis.” Trends in Analytical Chemistry, Vol. 22, No. 5.

Matheson, I.B. and Lee, J. (1981) An efficient bacterial bioluminescence with reduced lumichrome. Biochem Biophys Res Commun 100(2), 532-536.

Meighen, E.A. (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55(1), 123-142.

Mendonca, E., Picado, A., Paixao, S.M., Silva, L., Cunha, M.A., Leitao, S., Moura, I., Cortez, C. and Brito, F. (2009) Ecotoxicity tests in the environmental analysis of wastewater treatment plants: case study in Portugal. J Hazard Mater 163(2-3), 665-670.

Merlet, N., Thibaud, H. and Dore, M. (1985) Chloropicrin formation during oxidative treatments in the preparation of drinking water. Sci Total Environ 47, 223-228.

Mitch, W. A., Krasner, S. W., Westerhoff, P. &; Dotson, A. (2008)”Occurrence and formation of nitrogenous disinfection by-products. Denver” CO: AwwaRF. Submitted.

Morris, J.C., 1966. The acid ionization constant of HOCl from 5 to 35 oC. J. Phys. Chem. 70, 3798-3805.

Morris J. C. and Baum B. (1978) Precursors and mechan- isms of haloform formation in the chlorination of water supplies. Water Chlorination: Environmental Impact and Health Effects (Edited by Jolley R. L., Gorchev H. and Hamilton D. H.), Vol. 2, pp. 29-48. Ann Arbor Science, Ann Arbor, Mich.
Mosteo, R., Miguel, N., Martin-Muniesa, S., Ormad, M.P. and Ovelleiro, J.L. (2009) Evaluation of trihalomethane formation potential in function of oxidation processes used during the drinking water production process. J Hazard Mater 172(2-3), 661-666.

Nikolaou, A.D., Lekkas, T.D., Golfinopoulos, S.K. and Kostopoulou, M.N. (2002) Application of different analytical methods for determination of volatile chlorination by-products in drinking water. Talanta 56(4), 717-726.

Oaks, J.L., Gilbert, M., Virani, M.Z., Watson, R.T., Meteyer, C.U., Rideout, B.A., Shivaprasad, H.L., Ahmed, S., Chaudhry, M.J., Arshad, M., Mahmood, S., Ali, A. and Khan, A.A. (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427(6975), 630-633.

Oliver, B.G. (1983) Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors. Environ Sci Technol 17(2), 80-83.

Paul, W., George, A., Gary, A., Jean, D., 1998. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Res. 33(10), 2265-2276.

Plewa, M.J., Muellner, M.G., Richardson, S.D., Fasano, F., Buettner, K.M., Woo, Y.T., McKague, A.B. and Wagner, E.D. (2008) Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: an emerging class of nitrogenous drinking water disinfection byproducts. Environ Sci Technol 42(3), 955-961.

Pome, M.L., Green, W.R., Thurman, E.M., Orem, W.H., Lerch, H.E., 1999. DBP formation potential of aqueous humic substances. J. Am. Water Works Ass. 91(3), 103-115.

Raknes, K.L. (2005).”Ozone in Drinking Water Treatment: Process Design, Operation, and Optimization.” American Water Works Association, Denver.

Reckhow, D.A., Platt, T.L., MacNeill, A.L., McClellan, J.N., 2001. Formation and degradation of dichloroacetonitrile in drinking waters. J. Water Supply Res. Technol.-AQ. 50(1), 1-13.

Reckhow, D.A., Singer, P.C., 1985. Mechanisms of organic halide formation during fulvic acid chlorination and implications with respect to preozonation. In: Jolley, R.L., et al. (Eds). Water Chlorination: Chemistry, Environmental Impact and Health Effects, Vol. 5. Lewis Publishers, pp. 1229-1257.

Reckhow, D.A., Singer, P. C., and Malcolm, R. L., 1990. Chlorination of humic materials: byproduct formation and chemical interpretation. Environ. Sci. Technol. 24, 1665.

Richardson SD, Thruston AD, Caughran TV, Chen PH, Collette TW, Floyd TL.(1999). “Identi&;#64257;cation of new ozone disinfection byproducts in drinking water.” Environ Sci Technol (33), 3368–77.

Rizzo, L., 2011. Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res. 45, 4311–4340.

Rook, J.J., (1974). Formation of haloforms during chlorination of natural waters. J. Water Treat. Exam. 23(3), 234-243.

Rosal, R., Gonzalo, M.S., Boltes, K., Leton, P., Vaquero, J.J. and Garcia-Calvo, E. (2009) Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid. J Hazard Mater 172(2-3), 1061-1068.

Rosal, R., Rodriguez, A., Perdigon-Melon, J.A., Mezcua, M., Hernando, M.D., Leton, P., Garcia-Calvo, E., Aguera, A. and Fernandez-Alba, A.R. (2008) Removal of pharmaceuticals and kinetics of mineralization by O(3)/H(2)O(2) in a biotreated municipal wastewater. Water Res 42(14), 3719-3728.

Rosal, R., Rodriguez, A., Perdigon-Melon, J.A., Petre, A., Garcia-Calvo, E., Gomez, M.J., Aguera, A. and Fernandez-Alba, A.R. (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2), 578-588.

Ruud J.B. Peters, Ed W.B.De Leer and Leo De Galan. (1990).”Dihaloacetonitriles in Dutch Drinking Waters.” Wat, Res. (24), 797-800.

Schaefer F. C. (1970) Nitrile reactivity. In The Chemistry of the Cyano Group, ed. Z. Rappoport. Interscience Publishers, New York, p. 256.

Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U. and Wehrli, B. (2006) The challenge of micropollutants in aquatic systems. Science 313(5790), 1072-1077.

Shah, A.D. and Mitch, W.A. (2012) Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways. Environ Sci Technol 46(1), 119-131.
Shemer, H. and Linden, K.G. (2007) Aqueous photodegradation and toxicity of the polycyclic aromatic hydrocarbons fluorene, dibenzofuran, and dibenzothiophene. Water Res 41(4), 853-861.

Snoeyink, V.L., Jenkins, D. 1982.Water Chemistry. John Wiley, New York.

Staehelin, S. and Hoihne, J.(1982). Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol. (16), 666-681.

Symons, J.M., Speitel Jr., G.E., Diehl, A.C., Sorensen Jr., H.W. (1994). Precursor control in waters containing bromide. J. Am. Water Works Assoc.(86),48-60.

Teodorovic, I., Becelic, M., Planojevic, I., Ivancev-Tumbas, I. and Dalmacija, B. (2009) The relationship between whole effluent toxicity (WET) and chemical-based effluent quality assessment in Vojvodina (Serbia). Environ Monit Assess 158(1-4), 381-392.

Trehy and Bieber. (1981). “Detection, identification and quantitative analysis of dihaloacetonitriles in chlorinated natural waters.” In Advances in the Identification and Analysis of Organic Pollutants in Water (Edited by Keith L. H.). Ann Arbor Science, Ann Arbor, Mich.

Triebskorn, R., Casper, H., Heyd, A., Eikemper, R., Kohler, H.R. and Schwaiger, J. (2004) Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part II: cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 68(2), 151-166.

Urbanczyk, H., Ast, J.C., Higgins, M.J., Carson, J. and Dunlap, P.V. (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57(Pt 12), 2823-2829.

Van der Grinten, E., Pikkemaat, M.G., van den Brandhof, E.J., Stroomberg, G.J. and Kraak, M.H. (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80(1), 1-6.
&;#8195;
Victor Glezer, Batsheva Harris, Nelly Tal, Berta Iosefzon and Ovadia Lev. (1999).” Hydrolysis of Haloacetonitriles: Linear Free Energy and Products.” Water Res.(33), 1938-1948.

Wang, F., Ruan, M., Lin, H., Zhang, Y., Hong, H. and Zhou, X. (2014) Effects of ozone pretreatment on the formation of disinfection by-products and its associated bromine substitution factors upon chlorination/chloramination of Tai Lake water. Sci Total Environ 475, 23-28.

Wert, E.C., Rosario-Ortiz, F.L. and Snyder, S.A. (2009a) Using ultraviolet absorbance and color to assess pharmaceutical oxidation during ozonation of wastewater. Environ Sci Technol 43(13), 4858-4863.

Wert, E.C., Rosario-Ortiz, F.L. and Snyder, S.A. (2009b) Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res 43(4), 1005-1014.

Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z. and Woolsey, J. (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue), D668-672.

Xie, Y.F., 2004. Disinfection by-products in Drinking Water: Formation, Analysis, and Control. Lewis Publishers, New York.

Yang, X., Peng, J., Chen, B., Guo, W., Liang, Y., Liu, W. and Liu, L. (2012a) Effects of ozone and ozone/peroxide pretreatments on disinfection byproduct formation during subsequent chlorination and chloramination. J Hazard Mater 239-240, 348-354.

Yang, X., Shang, C., Lee, W., Westerhoff, P., Fan, C.H., 2008. Correlations between organic matter properties and DBP formation during chloramination. Water Res. 42 (8-9), 2329-2339

Yang, X., Shang, C., Shen, Q., Chen, B., Westerhoff, P., Peng, J. and Guo, W. (2012b) Nitrogen origins and the role of ozonation in the formation of haloacetonitriles and halonitromethanes in chlorine water treatment. Environ Sci Technol 46(23), 12832-12838.

Yang, X., Shang, C. and Westerhoff, P. (2007) Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination. Water Res 41(6), 1193-1200.

Yang, X., Shen, Q., Guo, W., Peng, J. and Liang, Y. (2012c) Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination. Chemosphere 88(1), 25-32.

Zhang, H., Qu, J., Liu, H. and Wei, D. (2009) Characterization of dissolved organic matter fractions and its relationship with the disinfection by-product formation. J Environ Sci (China) 21(1), 54-61.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top