跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐淑欣
研究生(外文):Shu-Hsin Hsu
論文名稱:小氣團肺部沉積量測系統建置研究
論文名稱(外文):Development and characterization of an aerosol bolus system for lung deposition measurement
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
口試委員:黃盛修林文印蕭大智
口試委員(外文):Sheng-Hsiu HuangWen-Yinn LinTa-Chih Hsiao
口試日期:2014-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:58
中文關鍵詞:氣團微粒肺部沉積率肺功能光學量測呼吸模擬
外文關鍵詞:aerosol boluslung depositionoptical measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
呼吸運動是造成空氣中粒狀物進入人體的主要原因,而微粒於不同呼吸道的沉積會造成不同的健康效應,其主要沉積機制會受到微粒的粒徑大小、帶電量、密度,以及人體呼吸方式而有所不同。近十年來,在工業衛生及醫療上,微粒於呼吸道沉積的研究倍受關注,除了對於人體健康危害的疑慮,利用微粒做為藥物輸送的治療方式,因其為非侵入性的治療且吸收快,成為醫療上的一大利器。因此有必要探討如何有效率及快速的量測微粒於人體呼吸道的沉積率。本研究的主要目的為建置一個利用氣團微粒量測肺部沉積率的系統,探討 (1)利用此系統和快速量測系統做比較,以達與國際間研究比較的可性度,(2)bolus在實際應用上可能發生之問題做進一步改良,提升bolus技術的效能。
以光學量測方式測量微粒濃度的優點為,可減少傳統使用微粒計數的量測儀器其因抽氣造成不必要損失,但在使用上就必須注意光源的強度及環境雜反光的影響,以避免出現無法判讀的訊號。氣團微粒的體積大小則會受到壓力以及注入時間長短而影響,在設定注入時間2.00秒及壓力為2.4kPa時,輸出體積約為90毫升;注在入時間0.03秒及壓力為1.2kPa時,輸出體積約為1.5毫升。在固定壓力下,放入時間越長,則氣團擴散情形會越嚴重,其波形半高寬度,分別在注入0.03秒和0.50秒時,為0.1公分增加至0.65公分,因而降低其測量局部沉積的解析力。在注入時間為0.05秒時,兩者差異約為50%,注入時間為0.08秒時,差異約為5%,注入時間大於0.1時,兩者並無顯著差異。為選擇在精確度和解析度皆佳的條件,應放入時間0.08秒,有較佳的判讀。以真人測試的結果,可發現CPC和PMT計算出回復率約差5%;若在呼吸測試時,吐氣吐到殘餘容積時,則會有較高的回覆率。
本研究實驗結果,建議可將此系統運用在未來呼吸治療線上即時監測系統的開發。


Inhalation is the most important route of entry for aerosol particles. Further, it is necessary to determine the specific region of particle deposition for properly evaluating human health risk. The particle deposition in the respiratory system depends on the particle size, particle charge condition, particle density and breathing pattern. In the past decade, particle deposition in the respiratory tract is become popular research for drug delivery because of it is non-invasive and rapid absorption in medical care and industrial hygiene. Therefore, it is necessary to discuss how to measure the particle deposition in the respiratory tract in a rapid and efficient way. The aim of this study was to development and characterization of an aerosol bolus system for lung deposition measurement to, and (1) verify the availability of the system to compare to prior studies, (2) improve the efficiency of the system.
Use of optical measurement could reduce particles loss due to unnecessary pumping, but it is worth noting that the laser intensity and stray- light background of the optical chamber. The aerosol bolus size was determined by the injection time and upstream pressure proportionally. The maximum of the bolus size would be set under the pressure 2.4 kPa and set injection time at 2.00 second, which output volume is approximately 90 ml; on the other hand, the minimum of the bolus size would be set under the pressure 1.2 kPa and set injection time at 0.03 second, which output volume is about 1.5 ml. When the injection time gets longer, the bolus would be more dispersed in the air under constant pressure, the half-width of bolus is 0.1 cm for Tinj 0.05 sec and 0.65 cm for Tinj 0.5 sec. The recovery rate of PMT will be more close to CPC on longer injection time. As the result, the injection time should be set at 0.08 second to avoid the bad resolution of the experiment. In the human test, the recovery rate is 5% difference between CPC and PMT; in addition, if exhaled to residual volume in the test, the recovery rate would be higher.
This study recommended to development an real time on-line monitoring of respiratory therapy system by using the result of this experiment in the future.


口試委員會審定書 I
誌謝 II
摘要 III
ABSTRACT IV
目錄 1
圖目錄 3
表目錄 4
附錄 5
第一章、研究背景與目的 6
1.1 研究背景 6
1.2 研究目的 7
第二章、文獻探討 8
2.1呼吸系統 8
2.2微粒於肺部沉積之機制 9
2.3肺部微粒沉積之量測方法 10
2.3.1放射影像標記 11
2.3.2數理模型與電腦模擬 12
2.3.3氣團導入技術 13
2.3.4快速局部肺部沉積量測系統 13
2.4 氣團微粒在藥物治療的應用 14
第三章、研究方法 15
3.1 實驗系統 15
3.2 實驗儀器 16
3.3分析資料與統整 19
3.4實驗參數 19
第四章、結果與討論 21
4.1 氣團微粒量測系統的建立 21
4.1.1 量測儀器比較 21
4.1.2 玻璃管 22
4.1.3 光學腔內乾淨空氣之供給 22
4.1.4 電磁閥注入時間限制 23
4.2 氣團微粒體積參數影響因子 23
4.3 呼吸模擬 24
4.3.1 管道模擬 25
4.3.2 呼吸參數的設定 26
4.3 真人測試 26
第五章、結論與建議 28
第六章、參考文獻 30


Attfield, M. D., P. L. Schleiff, J. H. Lubin, A. Blair, P. A. Stewart, R. Vermeulen, J. B. Coble and D. T. Silverman (2012). "The Diesel Exhaust in Miners study: a cohort mortality study with emphasis on lung cancer." J Natl Cancer Inst 104(11): 869-883
Beachey, W. (2007). Respiratory Care Anatomy and Physiology:Foundations for Clinical Practice, Mosby.
Bennett, W. D., J. S. Brown, K. L. Zeman, S. C. Hu, G. Scheuch and K. Sommerer (2002). "Targeting delivery of aerosols to different lung regions." J Aerosol Med 15(2): 179-188.
Brand, P., T. Tuch, O. Manuwald, W. Bischof, J. Heinrich, H. E. Wichmann, T. Beinert and J. Heyder (1994). "Detection of early lung impairment with aerosol bolus dispersion." Eur Respir J 7(10): 1830-1838.
Brown, J. S., T. R. Gerrity, W. D. Bennett, C. S. Kim and D. E. House (1995). "Dispersion of aerosol boluses in the human lung: dependence on lung volume, bolus volume, and gender." J Appl Physiol (1985) 79(5): 1787-1795.
Chang, K. N., S. H. Huang, C. W. Chen, H. D. Wu, Y. K. Chen, C. Y. Lai and C. C. Chen (2013). "A Sampling Train for Rapid Measurement of Regional Lung Deposition." Aerosol and Air Quality Research 13(2): 608-617.
Clark, A. R. (2012). "Understanding penetration index measurements and regional lung targeting." J Aerosol Med Pulm Drug Deliv 25(4): 179-187.
Heyder, J. (2004). "Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery." Proc Am Thorac Soc 1(4): 315-320.
Heyder, J., J. D. Blanchard, H. A. Feldman and J. D. Brain (1988). "Convective mixing in human respiratory tract: estimates with aerosol boli." J Appl Physiol (1985) 64(3): 1273-1278.
Heyder, J., J. D. Blanchard, H. A. Feldman and J. D. Brain (1988). "Convective mixing in human respiratory tract: estimates with aerosol boli." J Appl Physiol (1985) 64(3): 1273-1278.
Hinds, W. C. (1999). Aerosol Technology-Properties, Behave, and Measurement of Airborne Particles New York, Jonn Wiley &; Sons.
Huang, C. W., C. Pei and C. H. Huang (2011). "Respiratory deposition model of an inhaled aerosol bolus." Comput Methods Biomech Biomed Engin 14(10): 915-925.
Kim, C. S. and S. C. Hu (1998). "Regional deposition of inhaled particles in human lungs: comparison between men and women." Journal of Applied Physiology 84(6): 1834-1844.
Kim, C. S., S. C. Hu, P. DeWitt and T. R. Gerrity (1996). "Assessment of regional deposition of inhaled particles in human lungs by serial bolus delivery method." J Appl Physiol (1985) 81(5): 2203-2213.
Kim, C. S., G. A. Lewars and M. A. Sackner (1988). "Measurement of Total Lung Aerosol Deposition as an Index of Lung Abnormality." Journal of Applied Physiology 64(4): 1527-1536.
Kim, C. S. and P. A. Jaques (2005). "Total lung deposition of ultrafine particles in elderly subjects during controlled breathing." Inhal Toxicol 17(7-8): 387-399.
Koblinger, L. and W. Hofmann (1990). "Monte Carlo modeling of aerosol deposition in human lungs. Part I: Simulation of particle transport in a stochastic lung structure." Journal of Aerosol Science 21(5): 661-674.
Lippmann, M. and R. E. Albert (1969). "The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract." Am Ind Hyg Assoc J 30(3): 257-275.
Londahl, J., W. Moller, J. H. Pagels, W. G. Kreyling, E. Swietlicki and O. Schmid (2013). "Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review." J Aerosol Med Pulm Drug Deliv.
Majid, H., W. Hofmann and R. Winkler-Heil (2012). "Comparison of stochastic lung deposition fractions with experimental data." Ann Occup Hyg 56(3): 278-291.
Martin, A. R., A. Ang, I. M. Katz, S. Haussermann, G. Caillibotte and J. Texereau (2011). "An in vitro assessment of aerosol delivery through patient breathing circuits used with medical air or a helium-oxygen mixture." J Aerosol Med Pulm Drug Deliv 24(5): 225-234.
Mills, N. L., N. Amin, S. D. Robinson, A. Anand, J. Davies, D. Patel, J. M. de la Fuente, F. R. Cassee, N. A. Boon, W. Macnee, A. M. Millar, K. Donaldson and D. E. Newby (2006). "Do inhaled carbon nanoparticles translocate directly into the circulation in humans?" Am J Respir Crit Care Med 173(4): 426-431.
Moller, W., K. Felten, K. Sommerer, G. Scheuch, G. Meyer, P. Meyer, K. Haussinger and W. G. Kreyling (2008). "Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery." Am J Respir Crit Care Med 177(4): 426-432.
Venegas, J., T. Winkler and R. S. Harris (2013). "Lung physiology and aerosol deposition imaged with positron emission tomography." J Aerosol Med Pulm Drug Deliv 26(1): 1-8.
Weibel, E. (1963). Morphometry of the Human Lung. New York: Academic Press.
Zhou, Y., J. Sun and Y. S. Cheng (2011). "Comparison of deposition in the USP and physical mouth-throat models with solid and liquid particles." J Aerosol Med Pulm Drug Deliv 24(6): 277-284.
張光男.2012. 局部微粒肺部沉積之研究. In: Studies on the Regional Lung Deposition: 臺灣大學.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top