(18.210.12.229) 您好!臺灣時間:2021/03/03 16:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪思韓
研究生(外文):Si-Han Hong
論文名稱:應用脂質體學在毒性耐受性小鼠中探討萘的毒理機制
論文名稱(外文):Mass spectrometry-based lipidomics to explore the naphthalene toxicity in a tolerant mouse model
指導教授:林靖愉
口試委員:唐川禾鄭美玲蔡孟勳
口試日期:2014-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:76
中文關鍵詞:甘油磷酸膽鹼&;#33816;肺部毒性耐受性脂質體學
外文關鍵詞:phosphatidylcholinenaphthalenepulmonary toxicitytolerancelipidomics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
&;#33816;是個微溶於水並且可於許多環境中接觸到的多環芳香烴,也是一種具有器官及物種專一性的毒化物質。呼吸道遠端支氣管上的非纖毛細胞(Clara cell)對&;#33816;毒性具有易感受性。&;#33816;會引起小鼠呼吸道的代謝體擾動,包括脂質過氧化、細胞膜的破壞、能量供給失衡等代謝機制。
本實驗室稍早的研究利用ICR品系的雄性小鼠進行&;#33816;耐受性動物實驗,分別分為三組:單一劑量組、重複劑量暴露組及對照組,單一劑量暴露組連續七天注射橄欖油,再於第八天注射300 mg/kg&;#33816;;重複劑量暴露組連續七天注射200 mg/kg&;#33816;,再於第八天注射300 mg/kg&;#33816;;對照組連續八天注射橄欖油。24小時後觀察各器官的形態及代謝體擾動,單一劑量組所發現的呼吸道細胞膜上的外觀型態損壞和能量代謝擾動有關,然而在重複劑量暴露組會誘發Glutathione抗氧化機制,使小鼠呼吸道對對&;#33816;毒性產生耐受性。結果也顯示不只在主要標的器官-肺臟會受到&;#33816;重複暴露的影響,肝臟及腎臟組織也都會觀察到代謝體擾動的現象。
甘油磷脂類是生物膜的主要組成成分。脂質具有許多的生物意義,如細胞膜組成、細胞間訊息傳遞、活化&;#37238;等。因此本研究主要是要探討&;#33816;引起細胞傷害分子機制,注重於細胞膜主要成分磷&;#37272;膽鹼類(phosphorylcholine-containing lipids),包括脂質甘油磷酸膽鹼(phosphatidylcholine)和鞘磷脂(sphingomyelin)在耐受性小鼠受&;#33816;暴露後所造成的改變,以期更了解&;#33816;的制毒機制。
我們使用脂質體學方法探討&;#33816;傷害及&;#33816;耐受性老鼠的分子機制並將結果與組織病理學比對,透過超高效液相層析質譜儀(UPLC-MS/MS)和多變量分析,觀察肺臟、肝臟、腎臟的脂質體變化,探討不同&;#33816;暴露方式對小鼠的影響。由肺部非纖毛細胞組織病理學研究中顯示,在單一劑量組的小鼠肺臟組織會有空泡化跟腫脹的非纖毛細胞產生。而重複劑量暴露組與控制組間沒有顯著差異。偏最小平方判別分析(Partial Least Squares Discriminant Analysis, PLS-DA) 磷&;#37272;膽鹼類脂質結果發現單一劑量組與重複劑量暴露組有明顯分群趨勢。
本研究目標是要瞭解&;#33816;耐受性小鼠所引起的保護機制,藉此知道&;#33816;的制毒機制。本研究發現二醯基甘油磷酸膽鹼(Diacyl PCs)、含多元不飽和脂肪酸鏈的甘油磷酸膽鹼(PC with polyunsaturated fatty acyl (PUFA) chains)和醛磷脂醯膽鹼(plasmenylcholine)在重複劑量暴露組中有升高趨勢,可能與&;#33816;耐受性現象相關。


Naphthalene, a slightly water soluble volatile aromatic hydrocarbon,
is present in both groundwater and air emissions from a variety of sources. Naphthalene is a site- and species- selective cytotoxicant. The cell injury is found in mouse distal airways where the nonciliated or Clara cell is particularly susceptible to naphthalene toxicity. Naphthalene induced airway injury is related to lipid peroxidation, disruptions of membrane components, and imbalanced energy supply based on NMR-based metabolomics studies.
Previously, our lab has investigated the mechanisms of naphthalene toxicity in various mouse tissues among injured, tolerant, and the control mice using 1H NMR-based metabolomics. Male ICR mice were administered seven repeated injections (ip) of naphthalene (0, 200 mg/kg/day) in olive oil and gave a challenge dose (300 mg/kg/day) at the eighth day. From the metabolomic results, the single exposure effects of naphthalene on the respiratory system are associated with cellular membrane damages and energy metabolism disturbance. However, the repeated exposure induced the antioxidation mechanism associated with glutathione in the airway; therefore, mice become tolerant to naphthalene toxicity. Furthermore, there is no airway injury in this model.
Glycerophospholipids are key components of biological membranes. They also have a variety of biological functions, such as cellular messengers, enzyme activators and etc. In this study, we especially focus on the most abundant phosphorylcholine-containing lipids, including phosphatidylcholine (PC) and sphingomyelin (SM) and associate the changes of them with protective effects in a naphthalene tolerant mouse model. Moreover, critical toxic mechanisms of naphthalene will be revealed in this study.
In this study, we intend to understand the mechanism of naphthalene-induced cell injury or tolerance by profiling changes of phosphorylcholine-containing lipids including PCs and SM by using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) following multivariate statistical analysis. Phosphorylcholine-containing lipid profiling from naphthalene tolerant mice and injury mice will be compared and related with naphthalene toxicity..
From the results of the histopathology, we can easily recognize the single naphthalene dose group had vacuolated and swollen Clara cell in the airways. The lung of the repeated naphthalene dose group appeared to be similar as that in the control which administered with the vehicle (olive oil). Partial least-square-discriminate analysis (PLS-DA) model shows differences between the phosphorylcholine-containing lipid profiling from the analysis of the lung, liver, and kidney from the mice received single dose or the repeated dose of naphthalene. Diacyl PCs, PC with polyunsaturated fatty acyl (PUFA) chains and plasmenylcholine are elevated in the repeated dose group than those in the single dose group, which may be associated with the tolerant phenomenon. Our goal attempts to reveal the mechanisms of tolerance in a naphthalene tolerant mouse model and further understand naphthalene toxicity.


摘要 iii
Abstract v
List of figures iii
List of tables iv
1. Introduction 1
1.1 Background 1
1.2 Naphthalene acute toxicity from single dose treatment in mouse 2
1.3 Tolerance to multiple doses of naphthalene in mouse 5
1.4 Metabolomics 6
1.5 Lipidomics 8
2. Specific aims 11
3. Materials and methods 12
3.1 Experiment flow chart 12
3.2 Animal treatments 13
3.3 Histopathology 13
3.4 Sample preparation for lipid analysis 14
3.5 Phosphorylcholine-containing lipids profiling by UPLC/MS/MS 15
3.6 Structural identification 16
3.7 Spectral processing 18
3.8 Multivariate data analysis 18
3.9 Statistical analysis 20
4. Results 21
4.1 Histopathology 21
4.2 LC-MS/MS profiling results among lung, liver, and kidney 21
4.3 Metabolic responses of naphthalene in the mouse lung 22
4.4 Metabolic responses of naphthalene in the mouse liver 25
4.5 Metabolic responses of naphthalene in the mouse kidney 26
5. Discussion 29
5.1 Protection against oxidative stress in the lung of tolerant mice 30
5.1.1 Lysophosphatidylcholine 31
5.1.2 Diacylphosphatidylcholine 33
5.1.3 Phosphatidylcholine with polyunsaturated fatty acyl (PUFA) chains 35
5.1.4 Surfactant phosphatidylcholine 37
5.1.5 Plasmanylcholine (O- PC) and Plasmenylcholine (P- PC) 38
5.2 Less PCs involved in the liver of tolerant mice 40
5.3 Kidney 41
6. Conclusion 44
References 45
Figures 54
Tables 67


1.Toxicological Profile for Naphthalene, 1-Methylnaphthalene and 2-Methylnaphthalene. U.S. Department of Health and Human Services: Washington, DC: Agency for Toxic Substance and Disease Registry (ATSDR), Sciences International Inc; 1995.
2.Ling YS, Liang HJ, Chung MH, Lin MH, Lin CY. NMR- and MS-based metabolomics: various organ responses following naphthalene intervention. Molecular bioSystems. 2014;10(7):1918-31.
3.Stohs SJ, Ohia S, Bagchi D. Naphthalene toxicity and antioxidant nutrients. Toxicology. 2002;180(1):97-105.
4.Buckpitt A, Boland B, Isbell M, Morin D, Shultz M, Baldwin R, et al. Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Drug metabolism reviews. 2002;34(4):791-820.
5.Bogen KT, Benson JM, Yost GS, Morris JB, Dahl AR, Clewell HJ, 3rd, et al. Naphthalene metabolism in relation to target tissue anatomy, physiology, cytotoxicity and tumorigenic mechanism of action. Regulatory toxicology and pharmacology : RTP. 2008;51(2 Suppl):S27-36.
6.Yang M, Koga M, Katoh T, Kawamoto T. A study for the proper application of urinary naphthols, new biomarkers for airborne polycyclic aromatic hydrocarbons. Archives of environmental contamination and toxicology. 1999;36(1):99-108.
7.Belzer RB, Bus JS, Cavalieri EL, Lewis SC, North DW, Pleus RC. The naphthalene state of the science symposium: objectives, organization, structure, and charge. Regulatory toxicology and pharmacology : RTP. 2008;51(2 Suppl):S1-5.
8.O''Brien KA, Smith LL, Cohen GM. Differences in naphthalene-induced toxicity in the mouse and rat. Chemico-biological interactions. 1985;55(1-2):109-22.
9.Plopper CG, Suverkropp C, Morin D, Nishio S, Buckpitt A. Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene. The Journal of pharmacology and experimental therapeutics. 1992;261(1):353-63.
10.Van Winkle LS, Johnson ZA, Nishio SJ, Brown CD, Plopper CG. Early events in naphthalene-induced acute Clara cell toxicity: comparison of membrane permeability and ultrastructure. American journal of respiratory cell and molecular biology. 1999;21(1):44-53.
11.West JA, Pakehham G, Morin D, Fleschner CA, Buckpitt AR, Plopper CG. Inhaled naphthalene causes dose dependent Clara cell cytotoxicity in mice but not in rats. Toxicology and applied pharmacology. 2001;173(2):114-9.
12.Lee MG, Phimister A, Morin D, Buckpitt A, Plopper C. In situ naphthalene bioactivation and nasal airflow cause region-specific injury patterns in the nasal mucosa of rats exposed to naphthalene by inhalation. The Journal of pharmacology and experimental therapeutics. 2005;314(1):103-10.
13.Abdo KM, Eustis, S. L., MacDonald, M., Jokinen, M. P., Adkins, J. B., and Haseman, J. K. Naphthalene: A respiratory tract toxicant and carcinogen for mice. Inhal Toxicol. 1992;4:393-409.
14.Deneke SM, Fanburg BL. Regulation of cellular glutathione. Am J Physiol. 1989;257(4 Pt 1):L163-73.
15.Boyd MR, Burka LT. In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol. The Journal of pharmacology and experimental therapeutics. 1978;207(3):687-97.
16.Buckpitt AR, Boyd MR. The in vitro formation of glutathione conjugates with the microsomally activated pulmonary bronchiolar aklylating agent and cytotoxin, 4-ipomeanol. The Journal of pharmacology and experimental therapeutics. 1980;215(1):97-103.
17.Smart G, Buckpitt AR. Formation of reactive naphthalene metabolites by target vs non-target tissue microsomes: methods for the separation of three glutathione adducts. Biochemical pharmacology. 1983;32(5):943-6.
18.Warren DL, Brown DL, Jr., Buckpitt AR. Evidence for cytochrome P-450 mediated metabolism in the bronchiolar damage by naphthalene. Chemico-biological interactions. 1982;40(3):287-303.
19.Hong JH, Lee WC, Hsu YM, Liang HJ, Wan CH, Chien CL, et al. Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics. Journal of applied toxicology : JAT. 2014.
20.West JA, Buckpitt AR, Plopper CG. Elevated airway GSH resynthesis confers protection to Clara cells from naphthalene injury in mice made tolerant by repeated exposures. The Journal of pharmacology and experimental therapeutics. 2000;294(2):516-23.
21.West JA, Williams KJ, Toskala E, Nishio SJ, Fleschner CA, Forman HJ, et al. Induction of tolerance to naphthalene in Clara cells is dependent on a stable phenotypic adaptation favoring maintenance of the glutathione pool. The American journal of pathology. 2002;160(3):1115-27.
22.West JA, Van Winkle LS, Morin D, Fleschner CA, Forman HJ, Plopper CG. Repeated inhalation exposures to the bioactivated cytotoxicant naphthalene (NA) produce airway-specific Clara cell tolerance in mice. Toxicological sciences : an official journal of the Society of Toxicology. 2003;75(1):161-8.
23.O''Brien KA, Suverkropp C, Kanekal S, Plopper CG, Buckpitt AR. Tolerance to multiple doses of the pulmonary toxicant, naphthalene. Toxicology and applied pharmacology. 1989;99(3):487-500.
24.Huang FP. 1H NMR-based metabolomics to study naphthalene toxicity in a tolerant mouse model. National Taiwan University Master Thesis. 2013.
25.Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R, 3rd, Standiford TJ. Metabolic consequences of sepsis-induced acute lung injury revealed by plasma (1)H-nuclear magnetic resonance quantitative metabolomics and computational analysis. American journal of physiology Lung cellular and molecular physiology. 2011;300(1):L4-L11.
26.Lacy P. Metabolomics of sepsis-induced acute lung injury: a new approach for biomarkers. American journal of physiology Lung cellular and molecular physiology. 2011;300(1):L1-3.
27.Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Molecular systems biology. 2007;3:135.
28.Boros LG, Brackett DJ, Harrigan GG. Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Current cancer drug targets. 2003;3(6):445-53.
29.Kim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends in biotechnology. 2011;29(6):267-75.
30.Serkova NJ, Standiford TJ, Stringer KA. The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. American journal of respiratory and critical care medicine. 2011;184(6):647-55.
31.Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. Journal of proteome research. 2010;9(1):319-32.
32.Lei Z, Huhman DV, Sumner LW. Mass spectrometry strategies in metabolomics. The Journal of biological chemistry. 2011;286(29):25435-42.
33.Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. The FEBS journal. 2013;280(12):2817-29.
34.Rilfors L, Lindblom G. Regulation of lipid composition in biological membranes—biophysical studies of lipids and lipid synthesizing enzymes. Colloids and Surfaces B. 2002;26:112–24.
35.Bird SS, Marur VR, Stavrovskaya IG, Kristal BS. Qualitative Characterization of the Rat Liver Mitochondrial Lipidome using LC-MS Profiling and High Energy Collisional Dissociation (HCD) All Ion Fragmentation. Metabolomics : Official journal of the Metabolomic Society. 2013;9(1 Suppl):67-83.
36.Schiller J, Arnhold J, Benard S, Muller M, Reichl S, Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Analytical biochemistry. 1999;267(1):46-56.
37.Kidd PM. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Alternative medicine review : a journal of clinical therapeutic. 2005;10(4):268-93.
38.Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. Febs Journal. 2013;280(12):2817-29.
39.Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochimica et biophysica acta. 2013;1831(3):612-25.
40.Croset M, Brossard N, Polette A, Lagarde M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. The Biochemical journal. 2000;345 Pt 1:61-7.
41.Xu Y. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochimica et biophysica acta. 2002;1582(1-3):81-8.
42.Xu YF, O K, Choy PC. Plasmenylcholine (1-O-alk-1''-enyl-2-acyl-sn-glycero-3-phosphocholine) biosynthesis in guinea-pig heart and liver: cholinephosphotransferase is a bifunctional enzyme for the synthesis of phosphatidylcholine and plasmenylcholine. The Biochemical journal. 1994;301 ( Pt 1):131-7.
43.Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry. 1957;226(1):497-509.
44.Tang CH, Tsao PN, Chen CY, Shiao MS, Wang WH, Lin CY. Glycerophosphocholine molecular species profiling in the biological tissue using UPLC/MS/MS. Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 2011;879(22):2095-106.
45.Cheng ML, Shiao MS, Chiu DT, Weng SF, Tang HY, Ho HY. Biochemical disorders associated with antiproliferative effect of dehydroepiandrosterone in hepatoma cells as revealed by LC-based metabolomics. Biochemical pharmacology. 2011;82(11):1549-61.
46.Hsu FF, Turk J. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: The fragmentation processes. J Am Soc Mass Spectr. 2003;14(4):352-63.
47.Han XL, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectr. 1995;6(12):1202-10.
48.Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC bioinformatics. 2010;11:395.
49.Goodacre R. Metabolic profiling: pathways in discovery. Drug discovery today. 2004;9(6):260-1.
50.Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical chemistry. 2008;80(1):115-22.
51.Barker M, and Rayens, W. Partial least squares for discrimination. Journal of Chemometrics. 2003;17(3):166-73.
52.Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical chemistry. 2007;79(18):6995-7004.
53.J. Westerhuis HJH, S. Smit, D. Vis, A. Smilde, E. J. Velzen, J. M. Duijnhoven and F. Dorsten. Assessment of PLSDA cross validation. Metabolomics : Official journal of the Metabolomic Society. 2008;4:81–9.
54.Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Molecular bioSystems. 2012;8(2):470-81.
55.Wikoff WR, Gangoiti JA, Barshop BA, Siuzdak G. Metabolomics identifies perturbations in human disorders of propionate metabolism. Clinical chemistry. 2007;53(12):2169-76.
56.Batenburg JJ. Surfactant Phospholipids - Synthesis and Storage. Am J Physiol. 1992;262(4):L367-85.
57.Holm BA, Wang ZD, Egan EA, Notter RH. Content of dipalmitoyl phosphatidylcholine in lung surfactant: Ramifications for surface activity. Pediatric research. 1996;39(5):805-11.
58.Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4(9):549-610.
59.Trump BF, Berezesky IK. The role of altered [Ca2+] i regulation in apoptosis, oncosis, and necrosis. Biochimica et biophysica acta. 1996;1313(3):173-8.
60.Plopper CG, Van Winkle LS, Fanucchi MV, Malburg SRC, Nishio SJ, Chang AM, et al. Early events in naphthalene-induced acute Clara cell toxicity - II. Comparison of glutathione depletion and histopathology by airway location. American journal of respiratory cell and molecular biology. 2001;24(3):272-81.
61.Zacharek SJ, Fillmore CM, Lau AN, Gludish DW, Chou A, Ho JW, et al. Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci. Cell stem cell. 2011;9(3):272-81.
62.Buckpitt A, Chang AM, Weir A, Van Winkle L, Duan X, Philpot R, et al. Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Molecular pharmacology. 1995;47(1):74-81.
63.Walton EL. Highlights from the current issue. Biomedical journal. 2014;37(3):93-6.
64.Thies F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J. Unsaturated Fatty-Acids Esterified in 2-Acyl-1-Lysophosphatidylcholine Bound to Albumin Are More Efficiently Taken up by the Young-Rat Brain Than the Unesterified Form. Journal of neurochemistry. 1992;59(3):1110-6.
65.Li X, Yuan Y-J. Lipidomic Analysis of Apoptotic Hela Cells Induced by Paclitaxel. Omics-a Journal of Integrative Biology. 2011;15(10):655-64.
66.Dong J, Cai XM, Zhao LL, Xue XY, Zou LJ, Zhang XL, et al. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics : Official journal of the Metabolomic Society. 2010;6(4):478-88.
67.Dong J, Cai X, Zhao L, Xue X, Zou L, Zhang X, et al. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics. 2010;6(4):478-88.
68.Fuller N, Rand RP. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophysical journal. 2001;81(1):243-54.
69.Tokumura A. Physiological significance of lysophospholipids that act on the lumen side of mammalian lower digestive tracts. Journal of Health Science. 2011;57(2):115-28.
70.Nguyen LN, Ma DL, Shui GH, Wong PY, Cazenave-Gassiot A, Zhang XD, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509(7501):503-6.
71.Tang CH, Lin CY, Lee SH, Wang WH. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum. Aquatic toxicology. 2014;148:1-8.
72.Yager P, Peticolas WL. Statistical mechanical analysis of Raman spectroscopic order parameter changes in pressure-induced lipid bilayer phase transitions. Biophysical journal. 1980;31(3):359-70.
73.Wong PT, Mantsch HH. Effects of hydrostatic pressure on the molecular structure and endothermic phase transitions of phosphatidylcholine bilayers: a Raman scattering study. Biochemistry. 1985;24(15):4091-6.
74.Lakowicz JR, Thompson RB. Differential polarized phase fluorometric studies of phospholipid bilayers under high hydrostatic pressure. Biochimica et biophysica acta. 1983;732(2):359-71.
75.Braganza LF, Worcester DL. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry. 1986;25(9):2591-6.
76.Driscoll DA, Jonas J, Jonas A. High pressure 2H nuclear magnetic resonance study of the gel phases of dipalmitoylphosphatidylcholine. Chemistry and physics of lipids. 1991;58(1-2):97-104.
77.Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophysical journal. 2000;79(1):328-39.
78.Baenziger JE, Jarrell HC, Smith ICP. Molecular Motions and Dynamics of a Diunsaturated Acyl Chain in a Lipid Bilayer - Implications for the Role of Polyunsaturation in Biological-Membranes. Biochemistry. 1992;31(13):3377-85.
79.Lingwood D, Simons K. Lipid Rafts As a Membrane-Organizing Principle. Science. 2010;327(5961):46-50.
80.Olbrich K, Rawicz W, Needham D, Evans E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophysical journal. 2000;79(1):321-7.
81.Shoemaker SD, Vanderlick TK. Stress-induced leakage from phospholipid vesicles: Effect of membrane composition. Ind Eng Chem Res. 2002;41(3):324-9.
82.Frey B, Haupt R, Alms S, Holzmann G, Konig T, Kern H, et al. Increase in fragmented phosphatidylcholine in blood plasma by oxidative stress. Journal of lipid research. 2000;41(7):1145-53.
83.Araseki M, Yamamoto K, Miyashita K. Oxidative stability of polyunsaturated fatty acid in phosphatidylcholine liposomes. Biosci Biotech Bioch. 2002;66(12):2573-7.
84.Ollila S, Hyvonen MT, Vattulainen I. Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. The journal of physical chemistry B. 2007;111(12):3139-50.
85.Ma DW, Seo J, Switzer KC, Fan YY, McMurray DN, Lupton JR, et al. n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. The Journal of nutritional biochemistry. 2004;15(11):700-6.
86.Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochimica et biophysica acta. 1984;779(1):89-137.
87.Xu Y, Qian SY. Anti-cancer activities of omega-6 polyunsaturated fatty acids. Biomedical journal. 2014;37(3):112-9.
88.Feller SE, Gawrisch K, MacKerell AD, Jr. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. Journal of the American Chemical Society. 2002;124(2):318-26.
89.King RJ, Clements JA. Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol. 1972;223(3):715-26.
90.Grossmann G, Larsson I, Nilsson R, Robertson B, Rydhag L, Stenius P. Lung expansion in premature newborn rabbits treated with emulsified synthetic surfactant; principles for experimental evaluation of synthetic substitutes for pulmonary surfactant. Respiration; international review of thoracic diseases. 1984;45(4):327-38.
91.King RJ. Pulmonary surfactant. Journal of applied physiology: respiratory, environmental and exercise physiology. 1982;53(1):1-8.
92.Veldhuizen R, Possmayer F. Phospholipid metabolism in lung surfactant. Sub-cellular biochemistry. 2004;37:359-88.
93.Wert SE, Whitsett JA, Nogee LM. Genetic Disorders of Surfactant Dysfunction. Pediatr Devel Pathol. 2009;12(4):253-74.
94.Hook GE. Alveolar proteinosis and phospholipidoses of the lungs. Toxicologic pathology. 1991;19(4 Pt 1):482-513.
95.Harayama T, Shindou H, Shimizu T. Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acyltransferase 1. Journal of lipid research. 2009;50(9):1824-31.
96.Lands WE. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. The Journal of biological chemistry. 1958;231(2):883-8.
97.Gorgas K, Teigler A, Komljenovic D, Just WW. The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochimica et biophysica acta. 2006;1763(12):1511-26.
98.Chen X, Gross RW. Phospholipid Subclass-Specific Alterations in the Kinetics of Ion-Transport across Biologic Membranes. Biochemistry. 1994;33(46):13769-74.
99.Pandey PR, Roy S. Headgroup mediated water insertion into the DPPC bilayer: a molecular dynamics study. The journal of physical chemistry B. 2011;115(12):3155-63.
100.Matsuki H, Miyazaki E, Sakano F, Tamai N, Kaneshina S. Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths. Biochimica et biophysica acta. 2007;1768(3):479-89.
101.Lessig J, Fuchs B. Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Current medicinal chemistry. 2009;16(16):2021-41.
102.Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochimica et biophysica acta. 2012;1822(9):1442-52.
103.Mitchell AE, Lakritz J, Jones AD. Quantification of individual glutathione S-transferase isozymes in hepatic and pulmonary tissues of naphthalene-tolerant mice. Arch Toxicol. 2000;74(4-5):215-21.
104.Lakritz J, Chang A, Weir A, Nishio S, Hyde D, Philpot R, et al. Cellular and metabolic basis of Clara cell tolerance to multiple doses of cytochrome P450-activated cytotoxicants. I: Bronchiolar epithelial reorganization and expression of cytochrome P450 monooxygenases in mice exposed to multiple doses of naphthalene. The Journal of pharmacology and experimental therapeutics. 1996;278(3):1408-18.
105.Younes M, Siegers CP. Lipid-Peroxidation as a Consequence of Glutathione Depletion in Rat and Mouse-Liver. Research communications in chemical pathology and pharmacology. 1980;27(1):119-28.
106.Simopoulos AP. Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins, leukotrienes, and essential fatty acids. 1999;60(5-6):421-9.
107.Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental biology and medicine. 2008;233(6):674-88.
108.Khaselev N, Murphy RC. Structural characterization of oxidized phospholipid products derived from arachidonate-containing plasmenyl glycerophosphocholine. Journal of lipid research. 2000;41(4):564-72.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔