|
1.Toxicological Profile for Naphthalene, 1-Methylnaphthalene and 2-Methylnaphthalene. U.S. Department of Health and Human Services: Washington, DC: Agency for Toxic Substance and Disease Registry (ATSDR), Sciences International Inc; 1995. 2.Ling YS, Liang HJ, Chung MH, Lin MH, Lin CY. NMR- and MS-based metabolomics: various organ responses following naphthalene intervention. Molecular bioSystems. 2014;10(7):1918-31. 3.Stohs SJ, Ohia S, Bagchi D. Naphthalene toxicity and antioxidant nutrients. Toxicology. 2002;180(1):97-105. 4.Buckpitt A, Boland B, Isbell M, Morin D, Shultz M, Baldwin R, et al. Naphthalene-induced respiratory tract toxicity: metabolic mechanisms of toxicity. Drug metabolism reviews. 2002;34(4):791-820. 5.Bogen KT, Benson JM, Yost GS, Morris JB, Dahl AR, Clewell HJ, 3rd, et al. Naphthalene metabolism in relation to target tissue anatomy, physiology, cytotoxicity and tumorigenic mechanism of action. Regulatory toxicology and pharmacology : RTP. 2008;51(2 Suppl):S27-36. 6.Yang M, Koga M, Katoh T, Kawamoto T. A study for the proper application of urinary naphthols, new biomarkers for airborne polycyclic aromatic hydrocarbons. Archives of environmental contamination and toxicology. 1999;36(1):99-108. 7.Belzer RB, Bus JS, Cavalieri EL, Lewis SC, North DW, Pleus RC. The naphthalene state of the science symposium: objectives, organization, structure, and charge. Regulatory toxicology and pharmacology : RTP. 2008;51(2 Suppl):S1-5. 8.O''Brien KA, Smith LL, Cohen GM. Differences in naphthalene-induced toxicity in the mouse and rat. Chemico-biological interactions. 1985;55(1-2):109-22. 9.Plopper CG, Suverkropp C, Morin D, Nishio S, Buckpitt A. Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene. The Journal of pharmacology and experimental therapeutics. 1992;261(1):353-63. 10.Van Winkle LS, Johnson ZA, Nishio SJ, Brown CD, Plopper CG. Early events in naphthalene-induced acute Clara cell toxicity: comparison of membrane permeability and ultrastructure. American journal of respiratory cell and molecular biology. 1999;21(1):44-53. 11.West JA, Pakehham G, Morin D, Fleschner CA, Buckpitt AR, Plopper CG. Inhaled naphthalene causes dose dependent Clara cell cytotoxicity in mice but not in rats. Toxicology and applied pharmacology. 2001;173(2):114-9. 12.Lee MG, Phimister A, Morin D, Buckpitt A, Plopper C. In situ naphthalene bioactivation and nasal airflow cause region-specific injury patterns in the nasal mucosa of rats exposed to naphthalene by inhalation. The Journal of pharmacology and experimental therapeutics. 2005;314(1):103-10. 13.Abdo KM, Eustis, S. L., MacDonald, M., Jokinen, M. P., Adkins, J. B., and Haseman, J. K. Naphthalene: A respiratory tract toxicant and carcinogen for mice. Inhal Toxicol. 1992;4:393-409. 14.Deneke SM, Fanburg BL. Regulation of cellular glutathione. Am J Physiol. 1989;257(4 Pt 1):L163-73. 15.Boyd MR, Burka LT. In vivo studies on the relationship between target organ alkylation and the pulmonary toxicity of a chemically reactive metabolite of 4-ipomeanol. The Journal of pharmacology and experimental therapeutics. 1978;207(3):687-97. 16.Buckpitt AR, Boyd MR. The in vitro formation of glutathione conjugates with the microsomally activated pulmonary bronchiolar aklylating agent and cytotoxin, 4-ipomeanol. The Journal of pharmacology and experimental therapeutics. 1980;215(1):97-103. 17.Smart G, Buckpitt AR. Formation of reactive naphthalene metabolites by target vs non-target tissue microsomes: methods for the separation of three glutathione adducts. Biochemical pharmacology. 1983;32(5):943-6. 18.Warren DL, Brown DL, Jr., Buckpitt AR. Evidence for cytochrome P-450 mediated metabolism in the bronchiolar damage by naphthalene. Chemico-biological interactions. 1982;40(3):287-303. 19.Hong JH, Lee WC, Hsu YM, Liang HJ, Wan CH, Chien CL, et al. Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics. Journal of applied toxicology : JAT. 2014. 20.West JA, Buckpitt AR, Plopper CG. Elevated airway GSH resynthesis confers protection to Clara cells from naphthalene injury in mice made tolerant by repeated exposures. The Journal of pharmacology and experimental therapeutics. 2000;294(2):516-23. 21.West JA, Williams KJ, Toskala E, Nishio SJ, Fleschner CA, Forman HJ, et al. Induction of tolerance to naphthalene in Clara cells is dependent on a stable phenotypic adaptation favoring maintenance of the glutathione pool. The American journal of pathology. 2002;160(3):1115-27. 22.West JA, Van Winkle LS, Morin D, Fleschner CA, Forman HJ, Plopper CG. Repeated inhalation exposures to the bioactivated cytotoxicant naphthalene (NA) produce airway-specific Clara cell tolerance in mice. Toxicological sciences : an official journal of the Society of Toxicology. 2003;75(1):161-8. 23.O''Brien KA, Suverkropp C, Kanekal S, Plopper CG, Buckpitt AR. Tolerance to multiple doses of the pulmonary toxicant, naphthalene. Toxicology and applied pharmacology. 1989;99(3):487-500. 24.Huang FP. 1H NMR-based metabolomics to study naphthalene toxicity in a tolerant mouse model. National Taiwan University Master Thesis. 2013. 25.Stringer KA, Serkova NJ, Karnovsky A, Guire K, Paine R, 3rd, Standiford TJ. Metabolic consequences of sepsis-induced acute lung injury revealed by plasma (1)H-nuclear magnetic resonance quantitative metabolomics and computational analysis. American journal of physiology Lung cellular and molecular physiology. 2011;300(1):L4-L11. 26.Lacy P. Metabolomics of sepsis-induced acute lung injury: a new approach for biomarkers. American journal of physiology Lung cellular and molecular physiology. 2011;300(1):L1-3. 27.Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Molecular systems biology. 2007;3:135. 28.Boros LG, Brackett DJ, Harrigan GG. Metabolic biomarker and kinase drug target discovery in cancer using stable isotope-based dynamic metabolic profiling (SIDMAP). Current cancer drug targets. 2003;3(6):445-53. 29.Kim HK, Choi YH, Verpoorte R. NMR-based plant metabolomics: where do we stand, where do we go? Trends in biotechnology. 2011;29(6):267-75. 30.Serkova NJ, Standiford TJ, Stringer KA. The emerging field of quantitative blood metabolomics for biomarker discovery in critical illnesses. American journal of respiratory and critical care medicine. 2011;184(6):647-55. 31.Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. Journal of proteome research. 2010;9(1):319-32. 32.Lei Z, Huhman DV, Sumner LW. Mass spectrometry strategies in metabolomics. The Journal of biological chemistry. 2011;286(29):25435-42. 33.Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. The FEBS journal. 2013;280(12):2817-29. 34.Rilfors L, Lindblom G. Regulation of lipid composition in biological membranes—biophysical studies of lipids and lipid synthesizing enzymes. Colloids and Surfaces B. 2002;26:112–24. 35.Bird SS, Marur VR, Stavrovskaya IG, Kristal BS. Qualitative Characterization of the Rat Liver Mitochondrial Lipidome using LC-MS Profiling and High Energy Collisional Dissociation (HCD) All Ion Fragmentation. Metabolomics : Official journal of the Metabolomic Society. 2013;9(1 Suppl):67-83. 36.Schiller J, Arnhold J, Benard S, Muller M, Reichl S, Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Analytical biochemistry. 1999;267(1):46-56. 37.Kidd PM. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Alternative medicine review : a journal of clinical therapeutic. 2005;10(4):268-93. 38.Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. Febs Journal. 2013;280(12):2817-29. 39.Agassandian M, Mallampalli RK. Surfactant phospholipid metabolism. Biochimica et biophysica acta. 2013;1831(3):612-25. 40.Croset M, Brossard N, Polette A, Lagarde M. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. The Biochemical journal. 2000;345 Pt 1:61-7. 41.Xu Y. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochimica et biophysica acta. 2002;1582(1-3):81-8. 42.Xu YF, O K, Choy PC. Plasmenylcholine (1-O-alk-1''-enyl-2-acyl-sn-glycero-3-phosphocholine) biosynthesis in guinea-pig heart and liver: cholinephosphotransferase is a bifunctional enzyme for the synthesis of phosphatidylcholine and plasmenylcholine. The Biochemical journal. 1994;301 ( Pt 1):131-7. 43.Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry. 1957;226(1):497-509. 44.Tang CH, Tsao PN, Chen CY, Shiao MS, Wang WH, Lin CY. Glycerophosphocholine molecular species profiling in the biological tissue using UPLC/MS/MS. Journal of chromatography B, Analytical technologies in the biomedical and life sciences. 2011;879(22):2095-106. 45.Cheng ML, Shiao MS, Chiu DT, Weng SF, Tang HY, Ho HY. Biochemical disorders associated with antiproliferative effect of dehydroepiandrosterone in hepatoma cells as revealed by LC-based metabolomics. Biochemical pharmacology. 2011;82(11):1549-61. 46.Hsu FF, Turk J. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: The fragmentation processes. J Am Soc Mass Spectr. 2003;14(4):352-63. 47.Han XL, Gross RW. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry. J Am Soc Mass Spectr. 1995;6(12):1202-10. 48.Pluskal T, Castillo S, Villar-Briones A, Oresic M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC bioinformatics. 2010;11:395. 49.Goodacre R. Metabolic profiling: pathways in discovery. Drug discovery today. 2004;9(6):260-1. 50.Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical chemistry. 2008;80(1):115-22. 51.Barker M, and Rayens, W. Partial least squares for discrimination. Journal of Chemometrics. 2003;17(3):166-73. 52.Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, et al. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical chemistry. 2007;79(18):6995-7004. 53.J. Westerhuis HJH, S. Smit, D. Vis, A. Smilde, E. J. Velzen, J. M. Duijnhoven and F. Dorsten. Assessment of PLSDA cross validation. Metabolomics : Official journal of the Metabolomic Society. 2008;4:81–9. 54.Zhou B, Xiao JF, Tuli L, Ressom HW. LC-MS-based metabolomics. Molecular bioSystems. 2012;8(2):470-81. 55.Wikoff WR, Gangoiti JA, Barshop BA, Siuzdak G. Metabolomics identifies perturbations in human disorders of propionate metabolism. Clinical chemistry. 2007;53(12):2169-76. 56.Batenburg JJ. Surfactant Phospholipids - Synthesis and Storage. Am J Physiol. 1992;262(4):L367-85. 57.Holm BA, Wang ZD, Egan EA, Notter RH. Content of dipalmitoyl phosphatidylcholine in lung surfactant: Ramifications for surface activity. Pediatric research. 1996;39(5):805-11. 58.Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4(9):549-610. 59.Trump BF, Berezesky IK. The role of altered [Ca2+] i regulation in apoptosis, oncosis, and necrosis. Biochimica et biophysica acta. 1996;1313(3):173-8. 60.Plopper CG, Van Winkle LS, Fanucchi MV, Malburg SRC, Nishio SJ, Chang AM, et al. Early events in naphthalene-induced acute Clara cell toxicity - II. Comparison of glutathione depletion and histopathology by airway location. American journal of respiratory cell and molecular biology. 2001;24(3):272-81. 61.Zacharek SJ, Fillmore CM, Lau AN, Gludish DW, Chou A, Ho JW, et al. Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci. Cell stem cell. 2011;9(3):272-81. 62.Buckpitt A, Chang AM, Weir A, Van Winkle L, Duan X, Philpot R, et al. Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Molecular pharmacology. 1995;47(1):74-81. 63.Walton EL. Highlights from the current issue. Biomedical journal. 2014;37(3):93-6. 64.Thies F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J. Unsaturated Fatty-Acids Esterified in 2-Acyl-1-Lysophosphatidylcholine Bound to Albumin Are More Efficiently Taken up by the Young-Rat Brain Than the Unesterified Form. Journal of neurochemistry. 1992;59(3):1110-6. 65.Li X, Yuan Y-J. Lipidomic Analysis of Apoptotic Hela Cells Induced by Paclitaxel. Omics-a Journal of Integrative Biology. 2011;15(10):655-64. 66.Dong J, Cai XM, Zhao LL, Xue XY, Zou LJ, Zhang XL, et al. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics : Official journal of the Metabolomic Society. 2010;6(4):478-88. 67.Dong J, Cai X, Zhao L, Xue X, Zou L, Zhang X, et al. Lysophosphatidylcholine profiling of plasma: discrimination of isomers and discovery of lung cancer biomarkers. Metabolomics. 2010;6(4):478-88. 68.Fuller N, Rand RP. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophysical journal. 2001;81(1):243-54. 69.Tokumura A. Physiological significance of lysophospholipids that act on the lumen side of mammalian lower digestive tracts. Journal of Health Science. 2011;57(2):115-28. 70.Nguyen LN, Ma DL, Shui GH, Wong PY, Cazenave-Gassiot A, Zhang XD, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014;509(7501):503-6. 71.Tang CH, Lin CY, Lee SH, Wang WH. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum. Aquatic toxicology. 2014;148:1-8. 72.Yager P, Peticolas WL. Statistical mechanical analysis of Raman spectroscopic order parameter changes in pressure-induced lipid bilayer phase transitions. Biophysical journal. 1980;31(3):359-70. 73.Wong PT, Mantsch HH. Effects of hydrostatic pressure on the molecular structure and endothermic phase transitions of phosphatidylcholine bilayers: a Raman scattering study. Biochemistry. 1985;24(15):4091-6. 74.Lakowicz JR, Thompson RB. Differential polarized phase fluorometric studies of phospholipid bilayers under high hydrostatic pressure. Biochimica et biophysica acta. 1983;732(2):359-71. 75.Braganza LF, Worcester DL. Hydrostatic pressure induces hydrocarbon chain interdigitation in single-component phospholipid bilayers. Biochemistry. 1986;25(9):2591-6. 76.Driscoll DA, Jonas J, Jonas A. High pressure 2H nuclear magnetic resonance study of the gel phases of dipalmitoylphosphatidylcholine. Chemistry and physics of lipids. 1991;58(1-2):97-104. 77.Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophysical journal. 2000;79(1):328-39. 78.Baenziger JE, Jarrell HC, Smith ICP. Molecular Motions and Dynamics of a Diunsaturated Acyl Chain in a Lipid Bilayer - Implications for the Role of Polyunsaturation in Biological-Membranes. Biochemistry. 1992;31(13):3377-85. 79.Lingwood D, Simons K. Lipid Rafts As a Membrane-Organizing Principle. Science. 2010;327(5961):46-50. 80.Olbrich K, Rawicz W, Needham D, Evans E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophysical journal. 2000;79(1):321-7. 81.Shoemaker SD, Vanderlick TK. Stress-induced leakage from phospholipid vesicles: Effect of membrane composition. Ind Eng Chem Res. 2002;41(3):324-9. 82.Frey B, Haupt R, Alms S, Holzmann G, Konig T, Kern H, et al. Increase in fragmented phosphatidylcholine in blood plasma by oxidative stress. Journal of lipid research. 2000;41(7):1145-53. 83.Araseki M, Yamamoto K, Miyashita K. Oxidative stability of polyunsaturated fatty acid in phosphatidylcholine liposomes. Biosci Biotech Bioch. 2002;66(12):2573-7. 84.Ollila S, Hyvonen MT, Vattulainen I. Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. The journal of physical chemistry B. 2007;111(12):3139-50. 85.Ma DW, Seo J, Switzer KC, Fan YY, McMurray DN, Lupton JR, et al. n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. The Journal of nutritional biochemistry. 2004;15(11):700-6. 86.Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochimica et biophysica acta. 1984;779(1):89-137. 87.Xu Y, Qian SY. Anti-cancer activities of omega-6 polyunsaturated fatty acids. Biomedical journal. 2014;37(3):112-9. 88.Feller SE, Gawrisch K, MacKerell AD, Jr. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. Journal of the American Chemical Society. 2002;124(2):318-26. 89.King RJ, Clements JA. Surface active materials from dog lung. II. Composition and physiological correlations. Am J Physiol. 1972;223(3):715-26. 90.Grossmann G, Larsson I, Nilsson R, Robertson B, Rydhag L, Stenius P. Lung expansion in premature newborn rabbits treated with emulsified synthetic surfactant; principles for experimental evaluation of synthetic substitutes for pulmonary surfactant. Respiration; international review of thoracic diseases. 1984;45(4):327-38. 91.King RJ. Pulmonary surfactant. Journal of applied physiology: respiratory, environmental and exercise physiology. 1982;53(1):1-8. 92.Veldhuizen R, Possmayer F. Phospholipid metabolism in lung surfactant. Sub-cellular biochemistry. 2004;37:359-88. 93.Wert SE, Whitsett JA, Nogee LM. Genetic Disorders of Surfactant Dysfunction. Pediatr Devel Pathol. 2009;12(4):253-74. 94.Hook GE. Alveolar proteinosis and phospholipidoses of the lungs. Toxicologic pathology. 1991;19(4 Pt 1):482-513. 95.Harayama T, Shindou H, Shimizu T. Biosynthesis of phosphatidylcholine by human lysophosphatidylcholine acyltransferase 1. Journal of lipid research. 2009;50(9):1824-31. 96.Lands WE. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. The Journal of biological chemistry. 1958;231(2):883-8. 97.Gorgas K, Teigler A, Komljenovic D, Just WW. The ether lipid-deficient mouse: tracking down plasmalogen functions. Biochimica et biophysica acta. 2006;1763(12):1511-26. 98.Chen X, Gross RW. Phospholipid Subclass-Specific Alterations in the Kinetics of Ion-Transport across Biologic Membranes. Biochemistry. 1994;33(46):13769-74. 99.Pandey PR, Roy S. Headgroup mediated water insertion into the DPPC bilayer: a molecular dynamics study. The journal of physical chemistry B. 2011;115(12):3155-63. 100.Matsuki H, Miyazaki E, Sakano F, Tamai N, Kaneshina S. Thermotropic and barotropic phase transitions in bilayer membranes of ether-linked phospholipids with varying alkyl chain lengths. Biochimica et biophysica acta. 2007;1768(3):479-89. 101.Lessig J, Fuchs B. Plasmalogens in biological systems: their role in oxidative processes in biological membranes, their contribution to pathological processes and aging and plasmalogen analysis. Current medicinal chemistry. 2009;16(16):2021-41. 102.Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochimica et biophysica acta. 2012;1822(9):1442-52. 103.Mitchell AE, Lakritz J, Jones AD. Quantification of individual glutathione S-transferase isozymes in hepatic and pulmonary tissues of naphthalene-tolerant mice. Arch Toxicol. 2000;74(4-5):215-21. 104.Lakritz J, Chang A, Weir A, Nishio S, Hyde D, Philpot R, et al. Cellular and metabolic basis of Clara cell tolerance to multiple doses of cytochrome P450-activated cytotoxicants. I: Bronchiolar epithelial reorganization and expression of cytochrome P450 monooxygenases in mice exposed to multiple doses of naphthalene. The Journal of pharmacology and experimental therapeutics. 1996;278(3):1408-18. 105.Younes M, Siegers CP. Lipid-Peroxidation as a Consequence of Glutathione Depletion in Rat and Mouse-Liver. Research communications in chemical pathology and pharmacology. 1980;27(1):119-28. 106.Simopoulos AP. Evolutionary aspects of omega-3 fatty acids in the food supply. Prostaglandins, leukotrienes, and essential fatty acids. 1999;60(5-6):421-9. 107.Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental biology and medicine. 2008;233(6):674-88. 108.Khaselev N, Murphy RC. Structural characterization of oxidized phospholipid products derived from arachidonate-containing plasmenyl glycerophosphocholine. Journal of lipid research. 2000;41(4):564-72.
|