跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/07 12:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭泰余
研究生(外文):Tai-Yu Kuo
論文名稱:Calneuron I對N型電壓依賴鈣離子通道與CaMKIIβ的影響
論文名稱(外文):Effects of Calneuron I on N-Type Voltage-gated Ca2+ Channel and CaMKIIβ
指導教授:潘建源
指導教授(外文):Chien-Yuan Pan
口試委員:陳建璋林崇智
口試日期:2014-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:48
中文關鍵詞:Calneuron ICav2.2人類胚腎293細胞IQ motifCaMKIIβ
外文關鍵詞:Calneuron ICav2.2293T cellIQ motifCaMKIIβ
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
N型電壓依賴性鈣離子通道 (Cav2.2)受到細胞膜電位上升而開啟,當鈣離子流入細胞內,會產生負回饋作用抑制通道活性。鈣調素 (Calmodulin)有四個EF-hand的鈣離子結合位,可以調控多種通道活性。Calneuron I (CalnI)與鈣調素同鈣離子結合蛋白 (CaBP)家族有高度同源性。CalnI會調控囊泡運輸 (vesicle trafficking)從高基式體至細胞膜,之前研究也指出CalnI會抑制表現在293T細胞中Cav2.2的電流,然而CalnI和Cav2.2之間的關聯性仍然不清楚。Cav2.2於C端一段IQ motif被認為是鈣調素的結合位;我們猜測也可能為CalnI的結合位置,將Cav2.2的IQ motif突變無法受鈣調素調控,利用電生理紀錄Cav2.2 IQ motif突變和CalnI共同表現在293T細胞中的電流變化;我們的結果發現CalnI會抑制Cav2.2的電流無論IQ motif是否有突變。之前研究指出CaMKIIβ與CalnI在酵母雙雜交 (Yeast Two-Hybrid)有交互作用, CaMKIIβ也會被鈣調素活化,參與磷酸化反應與調控鈣離子通道,因此CalnI也有可能藉由調控CaMKIIβ來調控Cav2.2,藉由GST- CalnI作誘餌蛋白與表現在細胞中的CaMKIIβ做pull down處理,並利用西方墨點法觀察兩個蛋白是有交互關係。相反的,GST-CalnI和CaMKIIα的結合效率並不高。從我們的實驗結果認為CalnI不是藉由IQ motif抑制Cav2.2的電流;由於CaMKIIβ會影響突觸可塑性,並且在CalnI和CaMKIIβ的交互關係顯示,CalnI有可能在突觸可塑性中扮演部分角色。

N-type voltage gated Ca2+ channel (Cav2.2) opens when membrane potential elevates, then the channels will be inactivated by the influxed of Ca2+. Calmodulin (CaM), a protein with four EF-hand Ca2+-binding motifs, is involved in regulating versatile channel activities. Calneuron I (CalnI) is homologous to the calmodulin and belongs to the Ca2+ binding protein family. CalnI is known to control the vesicle trafficking from Golgi to the plasma membrane and our previous results shows that CalnI suppresses the currents of Cav2.2 expressed in 293T cells. However, it is not clear CalnI interacts with Cav2.2. CalnI and Cav2.2 mutations in the IQ motif were co-expressed in 293T cells to examine the effects of CalnI on Ca2+ currents using whole-cell patch clamp technique. The IQ motif at the C-terminal of Cav2.2 is proposed to be the CaM binding site; it is possible that CalnI binds to this motif. Our results showed that CalnI suppressed the Cav2.2 current density with or without mutations in the IQ motif. Using yeast-two-hybrid, my lab has previously shown that CalnI interacts with CaMKIIβ. To confirm this interaction, I used GST-CalnI as the bait and the CaMKIIβ expressed in 293T cells could be pull down. In contrast, GST-CalnI did not pulldown CaMKIIα efficiently. Our results suggest that CalnI may not interact with the Cav2.2 through the conserved IQ motif to suppress the Ca2+ current. By interacting with CaMKIIβ, CalnI may be involved in regulating the syanptic plasticity.

致謝……………………………………………….…………………………………….i
摘要……………………………………………….…………………………………...ii
英文摘要………………………………………………………………………..……..iii
1. 緒論………………………………………………………………………..……….1
1.1 鈣離子的重要性………………...................1
1.2 電壓依賴鈣離子通道…………………….……………….…………….1
1.3 N型電壓依賴鈣離子通道………………………………….…………..2
1.4 鈣離子結合蛋白……………………………………………..……………3
1.5 Calneuron………………………………………………………………….4
1.6 CaMKII……………………………………………………………………5
2. 實驗目標…………………………………………………………..………………6
3. 實驗設計………………………………………………………….……………….6
4. 材料與方法……………………………………………………………….……….7
4.1 化學藥品………………………………………………………………….7
4.2 溶液…………………………………………………………….…………7
4.3 細胞培養………………………………………………………….………9
4.4 蛋白質純化及染色………………………………………………………11
4.5 電生理紀錄………………………………………………………………12
5. 結果……………………………………………………………………….………14
5.1 Cav2.2的電流-電位關係…………………………………………...……14
5.2 Cav2.2與Cav2.2 IQ-motif突變株的電流-電位關係比較…………..…14
5.3 CalnI抑制Cav2.2的電流………………………………………..………15
5.4 CalnI抑制Cav2.2 IQ-motif突變株的電流………………………….…16
5.5 CalnI抑制Cav2.2 IQ-motif突變株的電流不需要鈣離子的參與….…17
5.6 CalnI需C端疏水端才能有效抑制Cav2.2 IQ-motif突變株的電流…..18
5.7 CalnI和CaMKIIβ的交互關係…………………………………………19
5.8 CalnI和CaMKIIα的交互關係…………………………………………20
6. 討論…………………………………………………………………….…………21
6.1 CalnI 對Cav2.2的調控…………………………………………………21
6.2 CalnI對Cav2.2的生理意義……………………………………..………22
6.3 CalnI與CaMKII的作用……………………………………..…………23
7. 參考文獻……………………………………………………………….…………24
8. 圖…………………………………………………………………….……………32


Borgesius, N.Z., van Woerden, G.M., Buitendijk, G.H., Keijzer, N., Jaarsma, D., Hoogenraad, C.C., and Elgersma, Y. (2011). betaCaMKII plays a nonenzymatic role in hippocampal synaptic plasticity and learning by targeting alphaCaMKII to synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 10141-10148.
Budde, T., Meuth, S., and Pape, H.C. (2002). Calcium-dependent inactivation of neuronal calcium channels. Nature reviews Neuroscience 3, 873-883.
Cammarota, M., Bevilaqua, L.R., Viola, H., Kerr, D.S., Reichmann, B., Teixeira, V., Bulla, M., Izquierdo, I., and Medina, J.H. (2002). Participation of CaMKII in neuronal plasticity and memory formation. Cellular and molecular neurobiology 22, 259-267.
Catterall, W.A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Annual review of cell and developmental biology 16, 521-555.
Catterall, W.A. (2010). Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915-928.
Catterall, W.A., Perez-Reyes, E., Snutch, T.P., and Striessnig, J. (2005). International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacological reviews 57, 411-425.
Chen, M.L., Chen, Y.C., Peng, I.W., Kang, R.L., Wu, M.P., Cheng, P.W., Shih, P.Y., Lu, L.L., Yang, C.C., and Pan, C.Y. (2008). Ca2+ binding protein-1 inhibits Ca2+ currents and exocytosis in bovine chromaffin cells. Journal of biomedical science 15, 169-181.
Cifuentes, F., Licona, II, De Leon, L., Medina, P., De-Miguel, F.F., and Morales, M.A. (2004). Contribution of different calcium channels to long-term potentiation in superior cervical ganglion of the rat. Neuroscience 129, 647-653.
Clements, M.P., Rose, S.P., and Tiunova, A. (1995). omega-Conotoxin GVIA disrupts memory formation in the day-old chick. Neurobiology of learning and memory 64, 276-284.
Colbran, R.J., and Brown, A.M. (2004). Calcium/calmodulin-dependent protein kinase II and synaptic plasticity. Current opinion in neurobiology 14, 318-327.
Coultrap, S.J., and Bayer, K.U. (2012). CaMKII regulation in information processing and storage. Trends in neurosciences 35, 607-618.
Dai, S., Hall, D.D., and Hell, J.W. (2009). Supramolecular assemblies and localized regulation of voltage-gated ion channels. Physiological reviews 89, 411-452.
Ding, J.D., Kennedy, M.B., and Weinberg, R.J. (2013). Subcellular organization of camkii in rat hippocampal pyramidal neurons. The Journal of comparative neurology 521, 3570-3583.
Dubel, S.J., Starr, T.V., Hell, J., Ahlijanian, M.K., Enyeart, J.J., Catterall, W.A., and Snutch, T.P. (1992). Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel. Proceedings of the National Academy of Sciences of the United States of America 89, 5058-5062.
Few, A.P., Lautermilch, N.J., Westenbroek, R.E., Scheuer, T., and Catterall, W.A. (2005). Differential regulation of CaV2.1 channels by calcium-binding protein 1 and visinin-like protein-2 requires N-terminal myristoylation. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 7071-7080.
Fink, C.C., Bayer, K.U., Myers, J.W., Ferrell, J.E., Jr., Schulman, H., and Meyer, T. (2003). Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron 39, 283-297.
Grabarek, Z. (2006). Structural basis for diversity of the EF-hand calcium-binding proteins. Journal of molecular biology 359, 509-525.
Huxley, H.E. (2002). The mechanism of muscular contraction. Science 164:1356-1366, 1969. Clinical orthopaedics and related research, S6-17.
Lee, A., Westenbroek, R.E., Haeseleer, F., Palczewski, K., Scheuer, T., and Catterall, W.A. (2002). Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. Nature neuroscience 5, 210-217.
Liang, H., DeMaria, C.D., Erickson, M.G., Mori, M.X., Alseikhan, B.A., and Yue, D.T. (2003). Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39, 951-960.
Lin, Y.C., and Redmond, L. (2008). CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proceedings of the National Academy of Sciences of the United States of America 105, 15791-15796.
Lisman, J., Schulman, H., and Cline, H. (2002). The molecular basis of CaMKII function in synaptic and behavioural memory. Nature reviews Neuroscience 3, 175-190.
Lisman, J.E., Raghavachari, S., and Tsien, R.W. (2007). The sequence of events that underlie quantal transmission at central glutamatergic synapses. Nature reviews Neuroscience 8, 597-609.
McCleskey, E.W., Fox, A.P., Feldman, D.H., Cruz, L.J., Olivera, B.M., Tsien, R.W., and Yoshikami, D. (1987). Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proceedings of the National Academy of Sciences of the United States of America 84, 4327-4331.
McCue, H.V., Burgoyne, R.D., and Haynes, L.P. (2009). Membrane targeting of the EF-hand containing calcium-sensing proteins CaBP7 and CaBP8. Biochemical and biophysical research communications 380, 825-831.
Mikhaylova, M., Sharma, Y., Reissner, C., Nagel, F., Aravind, P., Rajini, B., Smalla, K.H., Gundelfinger, E.D., and Kreutz, M.R. (2006). Neuronal Ca2+ signaling via caldendrin and calneurons. Biochimica et biophysica acta 1763, 1229-1237.
Miller, S.G., and Kennedy, M.B. (1985). Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. The Journal of biological chemistry 260, 9039-9046.
Nelson, M.R., and Chazin, W.J. (1998). Structures of EF-hand Ca(2+)-binding proteins: diversity in the organization, packing and response to Ca2+ binding. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine 11, 297-318.
Normann, C., Peckys, D., Schulze, C.H., Walden, J., Jonas, P., and Bischofberger, J. (2000). Associative long-term depression in the hippocampus is dependent on postsynaptic N-type Ca2+ channels. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 8290-8297.
Okamoto, K., Narayanan, R., Lee, S.H., Murata, K., and Hayashi, Y. (2007). The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America 104, 6418-6423.
Orlando, K., and Guo, W. (2009). Membrane organization and dynamics in cell polarity. Cold Spring Harbor perspectives in biology 1, a001321.
Pan, C.Y., Jeromin, A., Lundstrom, K., Yoo, S.H., Roder, J., and Fox, A.P. (2002). Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 22, 2427-2433.
Pragnell, M., De Waard, M., Mori, Y., Tanabe, T., Snutch, T.P., and Campbell, K.P. (1994). Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature 368, 67-70.
Shih, P.Y., Lin, C.L., Cheng, P.W., Liao, J.H., and Pan, C.Y. (2009). Calneuron I inhibits Ca(2+) channel activity in bovine chromaffin cells. Biochemical and biophysical research communications 388, 549-553.
Tadross, M.R., Dick, I.E., and Yue, D.T. (2008). Mechanism of local and global Ca2+ sensing by calmodulin in complex with a Ca2+ channel. Cell 133, 1228-1240.
Turner, T.J., Adams, M.E., and Dunlap, K. (1993). Multiple Ca2+ channel types coexist to regulate synaptosomal neurotransmitter release. Proceedings of the National Academy of Sciences of the United States of America 90, 9518-9522.
Urbano, F.J., Piedras-Renteria, E.S., Jun, K., Shin, H.S., Uchitel, O.D., and Tsien, R.W. (2003). Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels. Proceedings of the National Academy of Sciences of the United States of America 100, 3491-3496.
Wadel, K., Neher, E., and Sakaba, T. (2007). The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53, 563-575.
Weiss, J.L., Archer, D.A., and Burgoyne, R.D. (2000). Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. The Journal of biological chemistry 275, 40082-40087.
Wheeler, D.G., Barrett, C.F., Groth, R.D., Safa, P., and Tsien, R.W. (2008). CaMKII locally encodes L-type channel activity to signal to nuclear CREB in excitation-transcription coupling. The Journal of cell biology 183, 849-863.
Witcher, D.R., De Waard, M., Sakamoto, J., Franzini-Armstrong, C., Pragnell, M., Kahl, S.D., and Campbell, K.P. (1993). Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 261, 486-489.
Wu, Y.Q., Lin, X., Liu, C.M., Jamrich, M., and Shaffer, L.G. (2001). Identification of a human brain-specific gene, calneuron 1, a new member of the calmodulin superfamily. Molecular genetics and metabolism 72, 343-350.
Wykes, R.C., Bauer, C.S., Khan, S.U., Weiss, J.L., and Seward, E.P. (2007). Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 5236-5248.
Yanagi, K., Takano, M., Narazaki, G., Uosaki, H., Hoshino, T., Ishii, T., Misaki, T., and Yamashita, J.K. (2007). Hyperpolarization-activated cyclic nucleotide-gated channels and T-type calcium channels confer automaticity of embryonic stem cell-derived cardiomyocytes. Stem Cells 25, 2712-2719.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top