跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:岳威廷
研究生(外文):Wei-Ting Yueh
論文名稱:經典Wnt/β-catenin訊息傳遞路徑相關基因在瓢體蟲(Aeolosoma viride)前端再生的表現
論文名稱(外文):The Gene Expression Patterns of the Canonical Wnt/β-catenin Signaling Pathway Related Genes during Anterior Regeneration in Aeolosoma viride
指導教授:陳俊宏陳俊宏引用關係
指導教授(外文):Jiun-Hong Chen
口試委員:李心予游智凱郭典翰
口試委員(外文):Hsin-Yu LeeJr-Kai YuDian-Han Kuo
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:59
中文關鍵詞:Wnt訊息傳遞路徑再生瓢體蟲體軸建立
外文關鍵詞:Wnt pathwayregenerationAeolosoma viridenotumbody axis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:576
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Aeolosoma viride為一種淡水生環節動物,擁有強大的再生能力,在切除頭部後,A. viride可以在五天內完成頭部再生。本研究成功選殖出A. viride 體內Wnt signaling pathway 相關基因Avi-wnt4、 Avi-wnt8, Avi-β-catenin及Avi-notum,並研究它們在頭部再生過程中的表現及調控。結果顯示:在切除頭部後,avi-wnt4、avi-β-catenin及avi-notum會在再生中的blastema中表現。而blastema中的β-catenin在再生過程會進入細胞核開啟canonical Wnt pathway.。在Wnt pathway抑制劑XAV939處理後,A. viride的頭部再生會受到抑制;然而,在Wnt pathway促進劑azakenpaulone處理後,A. viride的頭部再生也會受到抑制,但是XAV939和azakenpaulone對再生的抑制效果會因為處裡藥物的時間點不同而產生不同的效力。因此,根據實驗結果,我們推論canonical Wnt/β-catenin Signaling pathway在調控A. viride的頭部再生過程中需要先關閉後開啟。

Aeolosoma viride, a fresh water annelid, has been used as an animal model for regeneration study. After decapitation, in which the anteriormost 4 segments including the brain were removed, A. viride can regenerate its lost parts within five days. Among many physiological pathways, the canonical Wnt signaling pathway is known to play roles not only in development and stem cell fate determination but also in regeneration. In this study, genes encoding four different components of Wnt signaling pathway, Avi-wnt4, Avi-wnt8, Avi-β-catenin and Avi-notum, have been cloned. All of them were expressed in the newly regenerating cell mass, the blastema. In addition, this pathway exerts its effect by nuclear import of β-catenin, functioning as a transcription co-activator, it was demonstrated that β-catenin indeed localizes into the nucleus in cells of blastema during regeneration. This result indicates that the pathway is in an on state during A. viride regeneration. Furthermore, after treated with XAV939, a Wnt pathway inhibitor, the anterior regeneration of A. viride was obviously inhibited. This result supports that Wnt pathway is indispensable for proper head regeneration in A. viride. However, after treated with azakenpaulone, a Wnt pathway activator, the anterior regeneration of A. viride was also obviously inhibited. However, the inhibitory effects of XAV939 and azakenpaulone took place at different time points. Therefore, it can be inferred that the canonical Wnt signaling pathway is regulated differently in the regeneration process of A. viride. That is, this pathway should be inactivated at the beginning, and then be activated at late during the anterior regeneration.

中文摘要 i
Abstract ii
Introduction 1
Regeneration 1
Wnt signaling pathway 1
The relationship among regeneration, body axis patterning and Wnt signaling pathway 2
Aeolosoma viride 3
Regeneration in A. viride. 4
Aim 4
Main finding in the thesis 4
Material and methods 6
Aeolosoma viride 6
Head amputation 6
Treatments during anterior regeneration 6
mRNA extraction 7
Reverse transcription 7
Gene cloning of Avi-wnt4, Avi,wnt8, AvI-β-catenin and Avi-notum 8
Synthesis of DIG-labled Riboprobes of Avi-wnt4, Avi-β-catenin and Avi-notum 11
Sample preparation for in situ hybridization or Immuno-fluorescence 11
Whole-mount In situ hybridization 12
Whole-mount Immuno-fluorescence 13
EdU labeling for proliferating cell 13
Statistical analysis 14
Results 15
Molecular cloning and phylogenetic analysis of the canonical Wnt signaling pathway genes 15
Gene expression patterns of the canonical Wnt signaling pathway related genes during anterior regeneration in A. viride 16
The effects of the canonical Wnt signaling related-drugs to anterior regeneration 17
Nuclear translocation of β-catenin during the anterior regeneration 18
Cell proliferation on the blastema during anterior regeneration 20
Discussion 21
Gene conservation 21
A/P body axis patterning 21
Anterior Regeneration in A. viride 22
An axis-pattern model for the anterior regeneration in A. viride 25
Other puzzles in the thesis 26
Future works 27
Reference 28
Table. 32
Figures 33
Supplement data 58


1.King, R.S. and P.A. Newmark, The cell biology of regeneration. The Journal of Cell Biology, 2012. 196(5): p. 553-562.
2.Philipp, I., et al., Wnt/β-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proceedings of the National Academy of Sciences, 2009. 106(11): p. 4290-4295.
3.Alvarado, A.S., Regeneration in the metazoans: why does it happen? BioEssays, 2000. 22(6): p. 578-590.
4.Almuedo-Castillo, M., M. Sureda-Gomez, and T. Adell, Wnt signaling in planarians: new answers to old questions. Int J Dev Biol, 2012. 56(1-3): p. 53-65.
5.Gurley, K.A., J.C. Rink, and A.S. Alvarado, β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis. Science, 2008. 319(5861): p. 323-327.
6.Heuberger, J. and W. Birchmeier, Interplay of Cadherin-Mediated Cell Adhesion and Canonical Wnt Signaling. Cold Spring Harbor Perspectives in Biology, 2010. 2(2).
7.Janssen, R., et al., Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evolutionary Biology, 2010. 10(1): p. 374.
8.Cho, S.-J., et al., Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective. Molecular Biology and Evolution, 2010. 27(7): p. 1645-1658.
9.Nusse, R., Wnt Signaling. Cold Spring Harbor Perspectives in Biology, 2012. 4(5).
10.Monga, S.P.S., Role of Wnt/β-catenin signaling in liver metabolism and cancer. The International Journal of Biochemistry &; Cell Biology, 2011. 43(7): p. 1021-1029.
11.Yokoyama, H., et al., Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus. PLoS ONE, 2011. 6(7): p. e21721.
12.Petersen, C.P. and P.W. Reddien, A wound-induced Wnt expression program controls planarian regeneration polarity. Proceedings of the National Academy of Sciences, 2009.
13.Katoh, M. and M. Katoh, WNT Signaling Pathway and Stem Cell Signaling Network. Clinical Cancer Research, 2007. 13(14): p. 4042-4045.
14.Hendaoui, I., et al., Inhibition of Wnt/β-Catenin Signaling by a Soluble Collagen-Derived Frizzled Domain Interacting with Wnt3a and the Receptors Frizzled 1 and 8. PLoS ONE, 2012. 7(1): p. e30601.
15.von Marschall, Z. and L.W. Fisher, Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling. Biochem Biophys Res Commun, 2010. 400(3): p. 299-304.
16.Ezan, J., et al., FrzA/sFRP-1, a secreted antagonist of the Wnt-Frizzled pathway, controls vascular cell proliferation in vitro and in vivo. Cardiovascular Research, 2004. 63(4): p. 731-738.
17.Dann, C.E., et al., Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature, 2001. 412(6842): p. 86-90.
18.Van Raay, T.J., R.J. Coffey, and L. Solnica-Krezel, Zebrafish Naked1 and Naked2 antagonize both canonical and non-canonical Wnt signaling. Developmental Biology, 2007. 309(2): p. 151-168.
19.Giraldez, A.J., R.R. Copley, and S.M. Cohen, HSPG Modification by the Secreted Enzyme Notum Shapes the Wingless Morphogen Gradient. Developmental Cell, 2002. 2(5): p. 667-676.
20.Gerlitz, O. and K. Basler, Wingful, an extracellular feedgack inhibitor of Wingless. Genes &; Development, 2002. 16(9): p. 1055-1059.
21.Flowers, G.P., J.M. Topczewska, and J. Topczewski, A zebrafish Notum homolog specifically blocks the Wnt/beta-catenin signaling pathway. Development, 2012. 139(13): p. 2416-2425.
22.Kreuger, J., et al., Opposing Activities of Dally-like Glypican at High and Low Levels of Wingless Morphogen Activity. Developmental Cell, 2004. 7(4): p. 503-512.
23.Almuedo-Castillo, M., E. Salo, and T. Adell, Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proceedings of the National Academy of Sciences, 2011.
24.Yazawa, S., et al., Planarian Hedgehog/Patched establishes anterior–posterior polarity by regulating Wnt signaling. Proceedings of the National Academy of Sciences, 2009. 106(52): p. 22329-22334.
25.Rink, J.C., et al., Planarian Hh Signaling Regulates Regeneration Polarity and Links Hh Pathway Evolution to Cilia. Science, 2009. 326(5958): p. 1406-1410.
26.Petersen, C.P. and P.W. Reddien, Polarized notum Activation at Wounds Inhibits Wnt Function to Promote Planarian Head Regeneration. Science, 2011. 332(6031): p. 852-855.
27.Rosanna, F., R. Tommaso, and Z. Francesco, Survival and Reproduction in Aeolosoma viride (Annelida, Aphanoneura). Hydrobiologia. 564(1): p. 95-99.
28.Yu-Wen, H., The Roles of Neoblasts on Regeneration and Reproduction in the Annelid, Aeolosoma viride. Master Thesis, National Taiwan University, 2012.
29.Cheng-Yi, C., Wnt/β-catenin Signaling Pathway Regulates Anterior Regeneration in Aeolosoma. viride. Master Thesis, National Taiwan University, 2011.
30.Vogg, M.C., et al., Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors, in Developmental Biology. 2014.
31.Gurley, K.A., et al., Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Developmental Biology, 2010. 347(1): p. 24-39.
32.Schneider, S.Q. and B. Bowerman, β-Catenin Asymmetries after All Animal/Vegetal- Oriented Cell Divisions in Platynereis dumerilii Embryos Mediate Binary Cell-Fate Specification. Developmental Cell, 2007. 13(1): p. 73-86.
33.Nakamura, Y., et al., Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer. Proceedings of the National Academy of Sciences, 2011. 108(22): p. 9137-9142.
34.Stoick-Cooper, C.L., et al., Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development, 2007. 134(3): p. 479-489.
35.Moore, K.A. and I.R. Lemischka, Stem Cells and Their Niches. Science, 2006. 311(5769): p. 1880-1885.
36.Lim, C.-H., et al., Avian WNT4 in the Female Reproductive Tracts: Potential Role of Oviduct Development and Ovarian Carcinogenesis. PLoS ONE, 2013. 8(7): p. e65935.
37.Leroux, L., et al., Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther, 2010. 18(8): p. 1545-52.
38.Jameson, S.A., Y.-T. Lin, and B. Capel, Testis development requires the repression of Wnt4 by Fgf signaling. Developmental Biology, 2012. 370(1): p. 24-32.
39.Gentile, L., F. Cebria, and K. Bartscherer, The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease Models &; Mechanisms, 2011. 4(1): p. 12-19.
40.Lander, A., et al., What does the concept of the stem cell niche really mean today? BMC Biology, 2012. 10(1): p. 19.
41.Kang, L.I., W.M. Mars, and G.K. Michalopoulos, Signals and cells involved in regulating liver regeneration. Cells, 2012. 1(4): p. 1261-92.
42.Torisu, Y., et al., Human homolog of NOTUM, overexpressed in hepatocellular carcinoma, is regulated transcriptionally by β-catenin/TCF. Cancer Science, 2008. 99(6): p. 1139-1146.
43.Roberts-Galbraith, R.H. and P.A. Newmark, Follistatin antagonizes Activin signaling and acts with Notum to direct planarian head regeneration. Proceedings of the National Academy of Sciences, 2013. 110(4): p. 1363-1368.
44.Collado, M.S., et al., The Postnatal Accumulation of Junctional E-Cadherin Is Inversely Correlated with the Capacity for Supporting Cells to Convert Directly into Sensory Hair Cells in Mammalian Balance Organs. Journal of Neuroscience, 2011. 31(33): p. 11855-11866.
45.Brasch, J., et al., Thinking outside the cell: how cadherins drive adhesion. Trends in Cell Biology, 2012. 22(6): p. 299-310.
46.Hong, C.-S., B.-Y. Park, and J.-P. Saint-Jeannet, Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm. Development, 2008. 135(23): p. 3903-3910.
47.Heinonen, K.M., et al., Wnt4 Enhances Murine Hematopoietic Progenitor Cell Expansion Through a Planar Cell Polarity-Like Pathway. PLoS ONE, 2011. 6(4): p. e19279.
48.Boyer, A., et al., WNT4 is required for normal ovarian follicle development and female fertility. The FASEB Journal, 2010. 24(8): p. 3010-3025.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top