|
1.King, R.S. and P.A. Newmark, The cell biology of regeneration. The Journal of Cell Biology, 2012. 196(5): p. 553-562. 2.Philipp, I., et al., Wnt/β-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proceedings of the National Academy of Sciences, 2009. 106(11): p. 4290-4295. 3.Alvarado, A.S., Regeneration in the metazoans: why does it happen? BioEssays, 2000. 22(6): p. 578-590. 4.Almuedo-Castillo, M., M. Sureda-Gomez, and T. Adell, Wnt signaling in planarians: new answers to old questions. Int J Dev Biol, 2012. 56(1-3): p. 53-65. 5.Gurley, K.A., J.C. Rink, and A.S. Alvarado, β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis. Science, 2008. 319(5861): p. 323-327. 6.Heuberger, J. and W. Birchmeier, Interplay of Cadherin-Mediated Cell Adhesion and Canonical Wnt Signaling. Cold Spring Harbor Perspectives in Biology, 2010. 2(2). 7.Janssen, R., et al., Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evolutionary Biology, 2010. 10(1): p. 374. 8.Cho, S.-J., et al., Evolutionary Dynamics of the wnt Gene Family: A Lophotrochozoan Perspective. Molecular Biology and Evolution, 2010. 27(7): p. 1645-1658. 9.Nusse, R., Wnt Signaling. Cold Spring Harbor Perspectives in Biology, 2012. 4(5). 10.Monga, S.P.S., Role of Wnt/β-catenin signaling in liver metabolism and cancer. The International Journal of Biochemistry &; Cell Biology, 2011. 43(7): p. 1021-1029. 11.Yokoyama, H., et al., Different Requirement for Wnt/β-Catenin Signaling in Limb Regeneration of Larval and Adult Xenopus. PLoS ONE, 2011. 6(7): p. e21721. 12.Petersen, C.P. and P.W. Reddien, A wound-induced Wnt expression program controls planarian regeneration polarity. Proceedings of the National Academy of Sciences, 2009. 13.Katoh, M. and M. Katoh, WNT Signaling Pathway and Stem Cell Signaling Network. Clinical Cancer Research, 2007. 13(14): p. 4042-4045. 14.Hendaoui, I., et al., Inhibition of Wnt/β-Catenin Signaling by a Soluble Collagen-Derived Frizzled Domain Interacting with Wnt3a and the Receptors Frizzled 1 and 8. PLoS ONE, 2012. 7(1): p. e30601. 15.von Marschall, Z. and L.W. Fisher, Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling. Biochem Biophys Res Commun, 2010. 400(3): p. 299-304. 16.Ezan, J., et al., FrzA/sFRP-1, a secreted antagonist of the Wnt-Frizzled pathway, controls vascular cell proliferation in vitro and in vivo. Cardiovascular Research, 2004. 63(4): p. 731-738. 17.Dann, C.E., et al., Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature, 2001. 412(6842): p. 86-90. 18.Van Raay, T.J., R.J. Coffey, and L. Solnica-Krezel, Zebrafish Naked1 and Naked2 antagonize both canonical and non-canonical Wnt signaling. Developmental Biology, 2007. 309(2): p. 151-168. 19.Giraldez, A.J., R.R. Copley, and S.M. Cohen, HSPG Modification by the Secreted Enzyme Notum Shapes the Wingless Morphogen Gradient. Developmental Cell, 2002. 2(5): p. 667-676. 20.Gerlitz, O. and K. Basler, Wingful, an extracellular feedgack inhibitor of Wingless. Genes &; Development, 2002. 16(9): p. 1055-1059. 21.Flowers, G.P., J.M. Topczewska, and J. Topczewski, A zebrafish Notum homolog specifically blocks the Wnt/beta-catenin signaling pathway. Development, 2012. 139(13): p. 2416-2425. 22.Kreuger, J., et al., Opposing Activities of Dally-like Glypican at High and Low Levels of Wingless Morphogen Activity. Developmental Cell, 2004. 7(4): p. 503-512. 23.Almuedo-Castillo, M., E. Salo, and T. Adell, Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proceedings of the National Academy of Sciences, 2011. 24.Yazawa, S., et al., Planarian Hedgehog/Patched establishes anterior–posterior polarity by regulating Wnt signaling. Proceedings of the National Academy of Sciences, 2009. 106(52): p. 22329-22334. 25.Rink, J.C., et al., Planarian Hh Signaling Regulates Regeneration Polarity and Links Hh Pathway Evolution to Cilia. Science, 2009. 326(5958): p. 1406-1410. 26.Petersen, C.P. and P.W. Reddien, Polarized notum Activation at Wounds Inhibits Wnt Function to Promote Planarian Head Regeneration. Science, 2011. 332(6031): p. 852-855. 27.Rosanna, F., R. Tommaso, and Z. Francesco, Survival and Reproduction in Aeolosoma viride (Annelida, Aphanoneura). Hydrobiologia. 564(1): p. 95-99. 28.Yu-Wen, H., The Roles of Neoblasts on Regeneration and Reproduction in the Annelid, Aeolosoma viride. Master Thesis, National Taiwan University, 2012. 29.Cheng-Yi, C., Wnt/β-catenin Signaling Pathway Regulates Anterior Regeneration in Aeolosoma. viride. Master Thesis, National Taiwan University, 2011. 30.Vogg, M.C., et al., Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors, in Developmental Biology. 2014. 31.Gurley, K.A., et al., Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response. Developmental Biology, 2010. 347(1): p. 24-39. 32.Schneider, S.Q. and B. Bowerman, β-Catenin Asymmetries after All Animal/Vegetal- Oriented Cell Divisions in Platynereis dumerilii Embryos Mediate Binary Cell-Fate Specification. Developmental Cell, 2007. 13(1): p. 73-86. 33.Nakamura, Y., et al., Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer. Proceedings of the National Academy of Sciences, 2011. 108(22): p. 9137-9142. 34.Stoick-Cooper, C.L., et al., Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development, 2007. 134(3): p. 479-489. 35.Moore, K.A. and I.R. Lemischka, Stem Cells and Their Niches. Science, 2006. 311(5769): p. 1880-1885. 36.Lim, C.-H., et al., Avian WNT4 in the Female Reproductive Tracts: Potential Role of Oviduct Development and Ovarian Carcinogenesis. PLoS ONE, 2013. 8(7): p. e65935. 37.Leroux, L., et al., Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther, 2010. 18(8): p. 1545-52. 38.Jameson, S.A., Y.-T. Lin, and B. Capel, Testis development requires the repression of Wnt4 by Fgf signaling. Developmental Biology, 2012. 370(1): p. 24-32. 39.Gentile, L., F. Cebria, and K. Bartscherer, The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration. Disease Models &; Mechanisms, 2011. 4(1): p. 12-19. 40.Lander, A., et al., What does the concept of the stem cell niche really mean today? BMC Biology, 2012. 10(1): p. 19. 41.Kang, L.I., W.M. Mars, and G.K. Michalopoulos, Signals and cells involved in regulating liver regeneration. Cells, 2012. 1(4): p. 1261-92. 42.Torisu, Y., et al., Human homolog of NOTUM, overexpressed in hepatocellular carcinoma, is regulated transcriptionally by β-catenin/TCF. Cancer Science, 2008. 99(6): p. 1139-1146. 43.Roberts-Galbraith, R.H. and P.A. Newmark, Follistatin antagonizes Activin signaling and acts with Notum to direct planarian head regeneration. Proceedings of the National Academy of Sciences, 2013. 110(4): p. 1363-1368. 44.Collado, M.S., et al., The Postnatal Accumulation of Junctional E-Cadherin Is Inversely Correlated with the Capacity for Supporting Cells to Convert Directly into Sensory Hair Cells in Mammalian Balance Organs. Journal of Neuroscience, 2011. 31(33): p. 11855-11866. 45.Brasch, J., et al., Thinking outside the cell: how cadherins drive adhesion. Trends in Cell Biology, 2012. 22(6): p. 299-310. 46.Hong, C.-S., B.-Y. Park, and J.-P. Saint-Jeannet, Fgf8a induces neural crest indirectly through the activation of Wnt8 in the paraxial mesoderm. Development, 2008. 135(23): p. 3903-3910. 47.Heinonen, K.M., et al., Wnt4 Enhances Murine Hematopoietic Progenitor Cell Expansion Through a Planar Cell Polarity-Like Pathway. PLoS ONE, 2011. 6(4): p. e19279. 48.Boyer, A., et al., WNT4 is required for normal ovarian follicle development and female fertility. The FASEB Journal, 2010. 24(8): p. 3010-3025.
|