跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭昭成
研究生(外文):Zhao-chen Kuo
論文名稱:小鼠藍班核內分泌伽瑪-氨基丁酸之中間神經元之性質探討
論文名稱(外文):Characterization of GABAergic Interneurons Within Locus Coeruleus Nucleus in Mice.
指導教授:閔明源
指導教授(外文):Ming-yuan Min
口試委員:楊琇雯傅毓秀陳志成
口試委員(外文):Hsiu-Wen YangYu-show FuChih-Cheng Chen
口試日期:2014-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:58
中文關鍵詞:藍斑核中間神經元伽瑪氨基丁酸伽瑪氨基丁酸B型受體穿透式電子顯微鏡全細胞雙紀錄
外文關鍵詞:Locus CoeruleusinterneuronGABAGABAB receptorTEMdouble patch whole cell recording
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藍班核作為大腦中主要的正腎上腺素分泌之來源,先前的研究證實伽瑪氨基丁酸此醫神經傳導物質在調控藍斑核神經元活性上扮演重要角色。在(非)快速動眼睡眠期藍斑核區內伽瑪氨基丁酸的濃度顯著上升,且藍斑核區域伽瑪氨基丁酸的突觸前結構約占總數的三分之二。我們實驗室先前的研究成果指出,伽瑪氨基丁酸可透過B型受體以提供大鼠藍斑核細胞一個長期性的抑制性調控,且這個調控可能與細胞間伽瑪氨基丁酸濃度有關。本研究中我們以電顯觀察大鼠藍斑核的伽瑪氨基丁酸B型受體分布情形,發現他們主要分布於突觸外的位置,可推得細胞間伽瑪氨基丁酸濃度將透過突觸外之受體調控藍斑核細胞。先前的研究指出許多核區作為藍斑核伽瑪氨基丁酸來源,但近來的研究指出藍斑核區域內的中間神經元可能擔任調控藍斑核細胞的角色,而這些分泌伽瑪氨基丁酸中間神經元的電生理性質與突觸生理性質仍然未被報告。本研究以全細胞電生理技術紀錄藍斑核內分泌伽瑪氨基丁酸之中間神經元的基礎性質,另以過氧化&;#37238;染色技術重建此些中間神經元的型態構造,發現可以放電情況將這些中間神經元分成三群,且在型態重建中發現伸入該核區內的軸突結構上有被認為可能是突觸的結構。而在電生理雙紀錄的實驗中卻沒辦法發現藍斑核細胞與中間神經元的單突觸連結關係。

The Locus coeruleus (LC) is a noradrenergic brainstem nucleus that is the major norepinephrine (NE) supply to the forebrain. It has been shown that GABA appears to be involved in the regulation of LC. Several studies have reported that extracellular GABA concentration is higher during REM/NREM sleep than wakefulness and that about two-third of boutons within LC contained GABA. Previous data of our lab showed that GABAB receptors could mediate tonic inhibition of LC neurons in rats, and this effect may link to ambient GABA concentration. Subcellular localization of GABAB receptors of LC nucleus in rats had been examined and found that most functional GABAB receptors are at extrasynaptic site, so ambient GABA could mediate tonic inhibition via extrasynaptic GABAB receptors here. However, the GABA source for tonic inhibition of LC neurons is still unclear. Many GABA afferents other brain nuclei have been reported previously, while recent studies found that local GABAergic interneuron may be a novel candidate of GABA supply to LC nucleus. However, the synaptic property and the role of LC GABAergic interneurons remain unknown. Thus we characterized these interneurons by using whole cell recording, following by staining of recorded interneurons for morphology reconstruction. Here we divided them into three group by their firing pattern and found some bouton-like structures on axons from the morphology reconstruction. But no functional pair has been found in the double patch experiments between LC neurons and GABAergic interneurons.

目錄
口試委員審定書.............................................i
致謝.....................................................ii
中文摘要.................................................iii
Abstract................................................iv
目錄.....................................................vi
Introduction.............................................1
Locus Coeruleus….................................1
Spontaneous firing activity of LC neurons........2
Afferent to Locus Coeruleus……………………………………………………. 4
GABA : Major inhibitory neurotransmitter of LC...5
GABAergic interneurons within LC.................8
Objectives.......................................9
Material and Method.....................................10
Animals…........................................10
Preparation of brainstem slices.................10
Electrophysiology...............................11
Immunohistochemistry............................13
Immunohistochemistry after recordings...........14
Pre-embedding immunocytochemistry and electron microscopic techniques..................................14
Drugs and Chemicals.....................................16
Results.................................................17
Subcellular localization of GABAB receptors of LC nuclei in rat...........................................17
Distribution of GFP positive neurons in locus coeruleus area..........................................18
Both GABAA receptors and GABAB receptors mediate tonic inhibition of LC neurons in mice.....................................................19
Whole-cell recordings for GFP-positive neurons within LC.21
The firing characteristics of LC GABAergic interneurons..22
The membrane properties of LC GABAergic interneurons.....23
GABAergic interneurons project axons with bouton-like structure into LC........................................24
No functional pair could be found by double experiments between LC neuron
and GABAergic interneuron................................25
Discussions..............................................27
EM observations of GABAB receptors...............28
Membrane properties of LC GABAergic interneurons.30
Morphology of LC GABAergic interneurons..........31
Future work......................................33
Figure legens............................................34
Reference................................................43
Figures..................................................48
Fig. 1.................................................. 48
Fig. 2...................................................50
Fig. 3...................................................51
Fig. 4...................................................52
Fig. 5...................................................53
Fig. 6...................................................54
Fig. 7...................................................55
Fig. 8...................................................56
Table 1..................................................58


Akos Kulik, Imre Vida, Rafael Lujan, Carola A. Haas, Guillermina Lopez-Bendito, Ryuichi Shigemoto &; Michael Frotscher (2003) Subcellular localization of metabotropic GABAB receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus. J Neurosci 23, 11026-11035

Amy FT Arnsten, Jenna C Steere and Robert D Hunt (1996) The Contribution of α2-Noradrenergic Mechanisms to Prefrontal Cortical Cognitive Function: Potential Significance for Attention-Deficit Hyperactivity Disorder. Arch Gen Psychiat 53, 448-455.

Aston-Jones G &; FE Bloom (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 8, 876-886.

Aston-Jones G, Shipley MT, Chouvet G, Ennis M, van Bockstaele E, Pieribone V, Shiekhattar R, Akaoka H, Drolet G &; Astier B (1991) Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res 88, 47-75.

Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiat 46, 1309–1320.

Aston-Jones G, Rajkowski J, Cohen J (2000) Locus coeruleus and regulation of behavioral &;#64258;exibility and attention. Prog. Brain Res 126, 165-182.

Aston-Jones G &; Cohen JD (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403-450.

Aston-Jones G, Yan Zhu &; Patrick Card (2004). Numerous GABAergic Afferents to Locus Ceruleus in the pericerulear dendritic zone: possible interneuronal pool. J Neurosci 24, 2313-2321.

Basbaum AI &; Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7, 309-338.

Belujon P, Baufreton J, Grandoso L, Boue-Grabot E, Batten TF, Ugedo L, Garret M &; Taupignon AI (2009) Inhibitory transmission in locus coeruleus neurons expressing GABAA receptor epsilon subunit has a number of unique properties. J Neurophysiol 102, 2312-2325.

Berridge CW &; Foote SL (1991). Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. J Neurosci 11, 3135-3145.

Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive process. Brain Res Brain Res Rev 42, 33-84.

Bjorklund A &; Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30, 194-202.

Carter ME, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S, Deisseroth K, &; de Lecea L. (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13, 1526-1533.

Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178, 1-16.

G Di Chiaraa, ML Porceddua, M Morellia, ML Mulasa &; GL Gessaa (1979) Evidence for a gabaergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat. Brain Res 176, 273-284.

Garret D. Stuber, Jonathan P Britt &; Antonello Bonci (2012) Optogenetic Modulation of Neural Circuits that Underlie Reward Seeking. Biologi Psychi 71, 1061-1067.

Corteen NL, Cole TM, Sarna A, Sieghart W &; Swinny JD (2011). Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci 34, 250-62.

Delia Belelli, Neil L Harrison, Jamie Maguire, Robert L Macdonald, Matthew C Walker, &; David W Cope (2009) Extrasynaptic GABAA Receptors: Form, Pharmacology, and Function. J Neurosci 29, 12757-12763.

Dvoryanchikov G, Huang YA, Barro-Soria R, Chaudhari N, Roper SD (2011) GABA, its receptors, and GABAergic inhibition in mouse taste buds. J Neurosci 31, 5782-5791.

Ennis M &; Aston-Jones G (1989) GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci 9, 2973-2981.

Eugene L. Dimitrov, Yuchio Yanagawa &; Ted B. Usdin (2013). Forebrain GABAergic projections to locus coeruleus in mouse. J. Comp. Neurol 521, 2373–2397.

Farrant M &; Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6, 215-229.

Foote SL, Bloom FE &; Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63, 844-914.

George Paxinos (2004) The rat nervous system, Ed 3. Academic Press

George Paxinos &; Keith B J Franklin (1997) The Mouse Brain in Stereotaxic Coordinates. Academic Press, An Elservier Science Imprint.

Glykys J &; Mody I (2007a) Activation of GABAA receptors: views from outside the synaptic cleft. Neuron 56, 763-770.

Glykys J &; Mody I (2007b) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582, 1163-1178.

Hille (2001) Ionchannels of excitatory membrane. Sunderland Massachusetts, Sinauer Associates.

James H Fallon, David A Koziell &; Robert Y Moore (1978) Catecholamine innervation of the basal forebrain II. Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180, 509-531.

Jasmin L, Rabkin SD, Granato A, Boudah A &; Ohara PT (2011). Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 424, 316-320.

Jesse M. Cedarbaum, George K. Aghajanian (1976) Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the α-antagonist piperoxane. Brain Res 112, 413–419.

Jones SL &; Gebhart GF (1986) Quantitative characterization of ceruleospinal inhibition of nociceptive transmission in the rat. J Neurophysiol 56, 1397-1410.

Justin Boyes &; J. Paul Bolam (2003) The subcellular localization of GABAB receptor subunits in the rat substantia nigra. Eur J Neurosci 18, 3279-3293.

Lacey CJ1, Boyes J, Gerlach O, Chen L, Magill PJ &; Bolam JP (2005) GABA(B) receptors at glutamatergic synapses in the rat striatum. Neurosci 136, 1083-1095.

Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ &; Saper CB (2002). Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22, 4568-4576.

Nelson LE, Guo TZ, Lu J, Saper CB, Franks NP &; Maze M (2002). The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5, 979-984.

Martin Mortensen, Bijal Patel &; Trevor G. Smart (2012) GABA Potency at GABAA Receptors Found in Synaptic and Extrasynaptic Zones. Front Cell Neurosci 6.

Matthew I Banks &; Robert A. Pearce (2000) Kinetic Differences between Synaptic and Extrasynaptic GABAA Receptors in CA1 Pyramidal Cells. J Neurosci 20, 937-948.

Millan MJ (2002) Descending control of pain. Prog Neurobiol 66, 355-474.

Min MY, Wu YW, Shih PY, Lu HW, Lin CC, Wu Y, Li MJ &; Yang HW (2008). Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats. Neuroscience 153, 1020-1033.

Oscar Arias-Carrion, Maria Stamelou, Eric Murillo-Rodriguez, Manuel Menendez-Gonzalez and Ernst Poppel (2010) Dopaminergic reward system: a short integrative review. Int Arch Med 3.

Paul A.M. van Dongen (1981) The human locus coeruleus in neurology and psychiatry: Parkinson''s, Lewy body, Hallervorden-Spatz, Alzheimer''s and Korsakoff''s disease, (pre)senile dementia, schizophrenia, affective disorders, psychosis. Prog Neurobio 17, 97-139.

Peters A, Palay SL &; Webster H (1991). The Fine Structure of the Nervous System. Oxford University Press, New York.

Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, &; Nestler EJ (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological, and biochemical correlates. J Neurosci 10, 2308-2317.

Ren K, Dubner R (2002) Descending modulation in persistent pain: an update. Pain 100, 1-6.
Ritchie E. Brown, James T McKenna, Stuart Winston, Radhika Basheer, Yuchio Yanagawa, Mahesh M. Thakkar &; Robert W.

McCarley (2008). Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67–green fluorescent protein knock-in mice. Eur J Neurosci 27, 352-363.

Robert L Macdonald &; Richard W Olsen (1994) GABAA RECEPTOR CHANNELS. Annu Rev Neurosci 17, 569-602.

Sara SJ and Bouret S (2012) Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 76, 130-141.

Stephen G Brickley, Stuart G Cull-Candy &; Mark Farrant (1999) Single-Channel Properties of Synaptic and Extrasynaptic GABAA Receptors Suggest Differential Targeting of Receptor Subtypes. J Neurosci 19, 2960-2973.

Susan J. Sara (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10, 211-223.

Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467, 60-79.

Terunuma M, Pangalos MN &; Moss SJ (2010) Functional modulation of GABAB receptors by protein kinases and receptor trafficking. Adv Pharmacol 58, 113-122.

Van Bockstaele EJ &; Pickel VM (1995) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 682, 215-221.

Van Bockstaele EJ, Eric EO Colago &; Rita J. Valentino (1998) Corticotropin-releasing factor-containing axon terminals synapse onto catecholamine dendrites and may presynaptically modulate other afferents in the rostral pole of the nucleus locus coeruleus in the rat brain. J Neuroendocrino l10, 743-758.

Van Bockstaelea EJ, James Peoplesa &; Rita J Valentinob (1999) Anatomic basis for differential regulation of the rostrolateral peri–locus coeruleus region by limbic afferents. Biol Psychi 46, 1352-1363.

Van Bockstaele EJ, Reyes BA, Valentino RJ (2010) The locus coeruleus: A key nucleus where stress and opioids intersect to mediate vulnerability to opiate abuse. Brain Res 1314, 162-174.

Van Bockstaele EJ &; Valentino RJ (2013) Neuropeptide regulation of the locus coeruleus and opiate-induced plasticity of stress responses. Adv Pharmacol 68, 405-420.

Wei F, Dubner R, Ren K. (1999) Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation. Pain 81, 215-219.

West WL, Yeomans DC &; Proudfit HK (1993) The function of noradrenergic neurons in mediating antinociception induced by electrical stimulation of the locus coeruleus in two different sources of Sprague-Dawley rats. Brain Res 626, 127-35.

Wu Y, Wang HY, Lin CC, Lu HC, Cheng SJ, Chen CC, Yang HW &; Min MY (2011) GABAB receptor-mediated tonic inhibition of noradrenergic A7 neurons in the rat. J Neurophysiol 105, 2715-2728.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top